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Abstract

Experimental satellite attitude simulators have long been used to test and analyze

control algorithms in order to drive down risk before implementation on an opera-

tional satellite. Ideally, the dynamic response of a terrestrial-based experimental

satellite attitude simulator would be similar to that of an on-orbit satellite. Un-

fortunately, gravitational disturbance torques and poorly characterized moments of

inertia introduce uncertainty into the system dynamics leading to questionable atti-

tude control algorithm experimental results. This research consists of three distinct,

but related contributions to the field of developing robust satellite attitude simula-

tors. In the first part of this research, existing approaches to estimate mass moments

and products of inertia are evaluated followed by a proposition and evaluation of a

new approach that increases both the accuracy and precision of these estimates using

typical on-board satellite sensors. Next, in order to better simulate the micro-torque

environment of space, a new approach to mass balancing satellite attitude simula-

tor is presented, experimentally evaluated, and verified. Finally, in the third area of

research, we capitalize on the platform improvements to analyze a control moment

gyroscope (CMG) singularity avoidance steering law. Several successful experiments

were conducted with the CMG array at near-singular configurations. An evaluation

process was implemented to verify that the platform remained near the desired test

momentum, showing that the first two components of this research were effective in al-

lowing us to conduct singularity avoidance experiments in a representative space-like

test environment.

iv



AFIT-ENY-DS-15-M-261

to my loving and supportive family

v



Acknowledgements

First, I would like to thank my advisor Dr. Swenson. The lessons you taught

while I was a master’s student were some of the most memorable I’ve had and I’m

truly glad I was able to study under you when returning to AFIT for my Ph.D. Dr.

Cobb and Dr. Jacques, thank you for your insight and wisdom. It has truly been a

pleasure being a student in your classroom and I sincerely thank you for the guidance

you’ve provided me. Dr. Leve, thank you for your willingness to provide me with the

firsthand knowledge of your steering law as well as always providing helpful feedback

to numerous rewrites. Gentlemen, without your help, guidance, and wisdom this

wouldn’t have been possible.

I would like to thank my family for their love and support. I would like to thank

my sister for always challenging me to challenge myself. Most of all, I’d like to thank

my wife for her encouragement and support when I felt I had challenged myself too

much.

Jonathan W. Wright

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Mass Moment of Inertia Estimation for
Terrestrial-Based Satellite Simulators . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2 Experimental Identification and Correction of
Disturbance
Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.3 Hardware Testing of Hybrid Steering Logic . . . . . . . . . . . . . . . . . . . 8

II. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Governing Equations of Satellite Attitude Dynamics . . . . . . . . . . . . . . . . 10
2.2 SimSat II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Survey of MOI Estimation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Direct Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 In-Flight and Simulated MOI Estimation . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Terrestrial-Based Satellite Attitude Simulators . . . . . . . . . . . . . . . 18
2.3.4 Proposed Mass Moment of Inertia Estimation . . . . . . . . . . . . . . . . 21

2.4 Survey of Disturbance Torque Reduction in Satellite
Attitude Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Disturbance Torque Characterization . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Avoidance of Structural Deflection . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Automatic Balancing of Satellite Attitude

Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



Page

2.5 Recent Advancements in Alternatives to 3-DOF
Satellite Attitude Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

III. Mass Moment of Inertia Estimation for Terrestrial-Based
Satellite Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Disturbance Torques and Additional Error
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Direct Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Maneuver-Based Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Real-Time MOI Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5 Post-Processing MOI Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Product of Inertia Estimation Methodology . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 The “Moment of Inertia” Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Satellite Maneuver for MOI Estimation . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Maneuver Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Zero-Order Disturbance Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Removing Zero-Order Disturbance Torques . . . . . . . . . . . . . . . . . . 51
3.4.2 Single Axis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 First-Order Disturbance Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Torque Characterization Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

IV. Experimental Identification and Correction of Disturbance
Torques for Satellite Attitude Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Disturbance Torque Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Torque Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Single Axis Maneuver and Local Balance . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Local Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Polynomial Approximation and Angular

Momentum Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.4 Balance Continuum and Global Balancing . . . . . . . . . . . . . . . . . . . 86

4.5 Derivation of Disturbance Torques Due to Structural
Deflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.1 Original Torque Characterization Results . . . . . . . . . . . . . . . . . . . . 93

4.6 Structural Reinforcements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



Page

4.9 Calibration of the linear actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

V. Hardware Testing of Hybrid Steering Logic for
Single-Gimbal Control Moment Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 SimSat II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Modifications to SimSat Since Previous
Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2 Attitude Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.3 Rigid Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.4 Angular Momentum Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.5 Control Moment Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4.1 Elliptical Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.2 Hyperbolic Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.3 Mathematical Characteristics of Singularities . . . . . . . . . . . . . . . . 127

5.5 Steering Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5.1 Singular Direction Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5.2 Local Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.5.3 Hybrid Steering Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.5.4 Determining the Type of Singularity . . . . . . . . . . . . . . . . . . . . . . . 133

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.6.1 Results Excluding Gimbal Rate Saturation . . . . . . . . . . . . . . . . . . 138
5.6.2 Results with Gimbal Rate Saturation . . . . . . . . . . . . . . . . . . . . . . 139

5.7 Comparison to Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.7.1 Identification of Sources of Gimbal Saturation . . . . . . . . . . . . . . . 147

5.8 HSL Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

VI. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1 MOI Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 Disturbance Torque Identification and Reduction . . . . . . . . . . . . . . . . . . 156
6.3 Hardware Testing of HSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

ix



List of Figures

Figure Page

3.1 AFIT SimSat and the Defined Body Axes . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Absolute Value of Fiber-Optic Gyroscope Angular
Velocity Data versus Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Twelve Collection Axes as Represented by Points on a
Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Step Maneuver Angular Position and Angular Rates . . . . . . . . . . . . . . . . . 43

3.5 SimSat Angular Rates and RW Angular Momentum . . . . . . . . . . . . . . . . . 48

3.6 Satellite Attitude Simulator and Inertial Coordinate
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Imbalance in Y -Axis and Subsequent Torque . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Sinusoid Maneuver Reaction Wheel Momentum and
Spacecraft Rotation Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Residual Angular Momentum from MOI Approximation . . . . . . . . . . . . . 54

3.10 Histogram of Test Axis MOI Approximations . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Imbalance in Z-Axis and Subsequent Torque . . . . . . . . . . . . . . . . . . . . . . . 56

3.12 Torque Characterization Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Torque Characterization Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Redefined Maneuver Axis X̃(φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.15 Imbalance Estimates and Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Satellite Attitude Simulator and Defined Body-Frame
Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Imbalance in Y−Axis and Subsequent Torque as a
function of θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Imbalance in Z−Axis and Subsequent Torque . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Torque Characterization Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



Figure Page

4.5 Definition of Alternate Test Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Initial Imbalance Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Gravitational Forces on a Flexible SimSat . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 Initial Results from Torque Characterization Maneuver . . . . . . . . . . . . . . 93

4.9 Braces Added to Increase Rigidity of Ballasts . . . . . . . . . . . . . . . . . . . . . . . 96

4.10 Torque Characterization Maneuver after Structural
Reinforcements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.11 Actuators Added to Actively Compensate for Structural
Flexture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.12 Torque Characterization Maneuver after Installation of
Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.13 Estimation of k−1(1, 1) and k−1(2, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.14 Imbalance Estimates as a Function of Commanded
Actuator Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.15 Torque Characterization Maneuver with Actuators
Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 SimSat Pyramid CMG Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Control Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Comparison of Torque Error Between SDA and HSL . . . . . . . . . . . . . . . 140

5.4 Comparison of Null Motion Between LG and HSL . . . . . . . . . . . . . . . . . 141

5.5 Torque Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Comparison of Previous Maneuver and Current
Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.7 Results of Maneuver Implemented with MPPI Steering
Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.8 Gimbal Angle and Gimbal Rate with Original Tuning
Parameters and 100 Hz Update Frequency . . . . . . . . . . . . . . . . . . . . . . . . 151

xi



Figure Page

5.10 Gimbal Angle and Gimbal Rate with New Tuning
Parameters and 100 Hz Update Frequency . . . . . . . . . . . . . . . . . . . . . . . . 152

5.11 Momentum Comparison of Previous and New Tuning
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xii



List of Tables

Table Page

2.1 Results of Time Delays on MOI Estimation . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Single Axis MOI Estimates without First-Order Torque
Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Single Axis MOI Estimates with First-Order Torque
Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Original Disturbance Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Disturbance Torques After Structural Reinforcement . . . . . . . . . . . . . . . . 98

4.3 Comparison of Structural Deflections Before and After
Structural Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Torque Analysis with Actuators Installed but Disabled . . . . . . . . . . . . . . 100

4.5 Torque Analysis with Actuators Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Comparison of Torques evaluated at at 15◦ with
Actuators Disabled and Actuators Enabled . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Comparison of Torques evaluated at at 5◦ with
Actuators Disabled and Actuators Enabled . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Experimental Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 HSL Tuning Parameters Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Comparison of Torque Errors between SDA and HSL . . . . . . . . . . . . . . . 138

5.4 Comparison of Null Motion between LG and HSL . . . . . . . . . . . . . . . . . . 139

5.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiii



List of Abbreviations

Abbreviation Page

H.O.T. higher-order terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ACS Attitude Control System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

AFIT Air Force Institute of Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CMG control moment gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

HSL Hybrid Steering Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

LG Local Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

MPPI Moore-Penrose Pseudoinverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

DOF degree-of-freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

MOI moment of inertia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

POI product of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

PID Proportional-Integral-Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

RMS Root Mean Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

RW reaction wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

SDA Singular Direction Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

SGCMG single gimbal control moment gyroscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

SimSat Simulation Satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

SVD Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

EKF Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

IMU inertial measurement unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

xiv



ADVANCEMENTS OF IN-FLIGHT MASS MOMENT

OF INERTIA AND STRUCTURAL DEFLECTION

ALGORITHMS FOR SATELLITE ATTITUDE SIMULATORS

I. Introduction

Satellite attitude simulators have long been used to test satellite attitude con-

trollers that may not be ready for on-orbit implementation on operational satellites

[32]. In order to make inferences as to the on-orbit performance of a controller, the

terrestrial-based satellite attitude simulator should respond to the controller in the

same manner as the satellite will. Unlike on-orbit satellites that operate in micro-

torque environments, satellite attitude simulators are exposed to potentially large

gravitational disturbance torques. This research has three distinct, but related con-

tributions to the field of developing robust satellite attitude simulators. In the first

part of this research, existing approaches to estimate mass moments and products of

inertia are evaluated followed by a proposition and evaluation of a new approach that

increases both the accuracy and precision of these estimates using typical on-board

satellite sensors. Next, in order to attempt to simulate a micro-torque environment,

a new approach to balancing to counteract three different types of gravitational dis-

turbance torques is implemented and verified. Finally, in the third area of research,

several experiments were conducted on a new singularity avoidance algorithm that

had only been previously validated analytically. In these experiments, the contribu-

tions of the first two areas of research were included which resulted in an experimental

evaluation of this new steering law on a well-characterized terrestrial-based satellite

simulator conducting maneuvers in a nearly micro-torque environment.
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1.1 Research Motivation

Terrestrial-based satellite attitude simulators are typically used to test controller

algorithms that may be too risky to operationally test after only numerical simula-

tion. The attitude simulators act as a stepping stone to help increase the technology

readiness level of these controllers and decrease the risk of implementation on op-

erational satellites. If the satellite simulator is incorrectly characterized, then the

experimental results of a controller that may otherwise be successful instead may re-

sult in inconclusive, false negative or false positive results. An example of this can be

seen in our previous research attempting to experimentally validate a single-gimbal

control moment gyroscope (CMG) steering law called Hybrid Steering Logic (HSL)

on a terrestrial-based satellite attitude simulator Simulation Satellite (SimSat) [41].

Hybrid steering logic is a steering law for a four single gimbal control moment gyro-

scope (SGCMG) array that is intended to avoid singularities associated with SGCMG

arrays which will be discussed in much more detail in Chapter V. After implement-

ing three experimental maneuvers, two of which were deemed successful and the third

experimental maneuver was deemed inconclusive as none of the steering laws, HSL

included, were able to avoid the singularity. While attempting to analyze the in-

conclusive results we determined that there was very little additional information

that could be gathered. Although we could and did compare the estimated angular

momentum of the spacecraft to the angular momentum of the CMG–as they should

be equal and opposite–all we were able to do was confirm our suspicions that the

values were not equal and opposite meaning we had either a poorly characterized

platform moment of inertia (MOI), poorly characterized CMG angular momentum,

uncharacterized external disturbance torques, or any combination of the three.

After obtaining inconclusive results while testing the CMG steering algorithms, we

decided that instead of delving deeper into why we obtained inconclusive results we
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would attempt to avoid CMG singularity by calculating the desired controls a-priori

and implementing a feed-forward control solution. After researching McFarland’s [26]

work on the implementation of feed-forward optimal control solutions on using the

onboard reaction wheel (RW) array, we concluded that the current limiting factor on

SimSat is not the implementation of control algorithms, but the agreement between

the dynamics of SimSat and our simulator models. This disagreement was theorized

to be primarily in the form of MOI mischaracterization and uncharacterized distur-

bance torques. It was therefore concluded that in order to move forward we need to

take what appeared to be a step back and advance the characterization methodologies

of terrestrial-based satellite attitude simulators. Accomplishing the increased charac-

terization will give us a better understanding of the research platforms and allow us

to better identify the error sources that are leading to inconclusive research. Addi-

tionally, the increased characterization will allow us to examine research topics that

we are currently unable to implement such as accurate feed-forward optimal control

solutions.

1.2 Problem Statement

Previous research by McFarland [26] suggests the need for higher precision and

accuracy in the mass and torque characterization of a terrestrial-based satellite at-

titude simulator to thoroughly analyze the feed-forward implementation of optimal

control solutions. While attempting to implement near real-time optimal control solu-

tions, McFarland experienced difficulties in experimental implementation of optimal

control solutions due to uncharacterized disturbance torques and errors in MOI esti-

mates that led to a constant need to re-calculate the optimal control solution. With

better characterization of the MOI and a better model of the disturbance torques the

calculated optimal control solution will remain valid longer allowing for more time to
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calculate the updated optimal control solution.

1.3 Research Objectives

The objective of this research is to develop novel methodologies to reduce the

errors introduced when attempting to validate simulation results on an experimental

platform. This research first focuses on developing and evaluating a new method to

increase the precision and accuracy of the mass MOI estimate. Next, this research will

develop a novel methodology to identify and decrease the disturbance torques that

satellite attitude simulators are constantly exposed to. Finally, this research will take

advantage of the increase in precision and accuracy of the MOI method developed

in Chapter III and the decrease in gravitational disturbance torques developed in

Chapter IV to experimentally analyze the SGCMG steering logic known as HSL

developed by Leve [22].

1.4 Method Overview

The research presented in Chapter III begins with the analysis of previous MOI

characterization methodologies and assumptions. Once the methodologies were thor-

oughly analyzed, we identified irregularities in the response to a common estimation

maneuver. We then developed an estimation maneuver specifically to allow for better

curve fitting of the sensor measurements to increase precision. To increase accuracy

of the MOI estimates, additional steps are taken to correct for zero-order disturbance

torques. Finally, the sensitivity to first-order disturbance torques is analyzed, the

first-order disturbance torques are estimated, and a novel method for the correction

of the first-order disturbance torques during post-processing is implemented.

Chapter IV presents the research in expanding on the post-processing correction

of first-order disturbance torques presented in Chapter III and develops and exper-
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imentally verifies a dynamic balancing method to correct of disturbance torques up

to the third order. We begin by experimentally identifying verifying the presence of

first-order torques other than an imbalance in the Z−axis, the body axis that is per-

pendicular to the plane of the satellite’s tabletop. We then derive the equations for

the disturbance torques resulting from structural deflection and identify a first-order

component. Structural reinforcements are added to SimSat and the process to iden-

tify first-order torques was repeated. Finally, linear actuators were added to SimSat

and a controller was developed to move masses to counteract first- to third-order

disturbance torques.

Chapter V presents the experimental implementation and analysis of the HSL

steering law developed by Leve [22] on SimSat. During his research, Leve conducted

simulations to analyze how HSL performed when compared against the two steer-

ing laws that HSL is comprised of, Singular Direction Avoidance (SDA) and Local

Gradient (LG). The comparison of the three steering laws was made during a single

maneuver repeated three times to account for three different starting configurations

of the CMG array–away from singularity, near a hyperbolic singularity, and near an

elliptic singularity. Each of the three steering laws completed the same three maneu-

vers and the steering laws were then compared based on the amount of null-motion

and torque error during the maneuver. We repeated the previously inconclusive ex-

periment HSL experiment implemented on SimSat [41] by selecting the same HSL

tuning parameters and conducting the same maneuvers that had previously been an-

alyzed in simulation by Leve [22]. In addition to the steering-law induced null-motion

and torque error, non-simulated hardware constraints such as a gimbal rate limita-

tion of 1.5 rad/s was also taken into considered. When the maximum gimbal rates

were exceeded an additional torque error independent of the three steering laws was

experienced and analyzed. In addition to a direct comparison of HSL, SDA, and LG
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conducted during this round of experimentation, we analyzed the benefit of increased

characterization on the ability to draw additional conclusions about the validity of

the experiment as well as any additional characterizations that may be required.

Furthermore, the updated experimental results were compared against the previous

experimental results for a better identification of what may have been the source of

the original inconclusive results in an attempt to better validate the steering laws and

obtain better agreement between future simulations and experiments.

1.5 Research Contributions

A novel method to increase the both the precision and accuracy of in-flight mass

MOI and product of inertia (POI) of a satellite attitude simulator has both immediate

and future impact. To begin with, an immediate impact of the increased precision of

in-flight MOI estimation is that previous research in the field of in-flight MOI estima-

tion as a means-to-an-end now become much more viable. Two notable examples are

Dabrowski’s [6] research into the identification of parasitic satellites and Geitgey’s [11]

research on using MOI estimates to estimate the remaining onboard fuel. The results

of both research topics relied on the precision of the MOI estimation methodology

and an increase in the precision of in-flight MOI estimation results in more viability

of these two capabilities.

The future contributions of increasing the precision and accuracy of mass charac-

terization and disturbance torque correction are an increased confidence in experimen-

tal results and the ability to conduct experimental research on controllers that require

a higher fidelity of characterization than is currently available. One example of a con-

troller that requires higher accuracy MOI and disturbance torque characterizations

is feed-forward optimal-control solutions. Previous research in the implementation of

near real-time optimal-control solutions by McFarland [26] had difficulties in experi-
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mental implementation due to uncharacterized disturbance torques and errors in MOI

estimates leading to a constant need to re-calculate the optimal control solution. With

better characterization of the MOI and a better model of the disturbance torques the

calculated optimal control solution will remain valid longer allowing for more time

to calculate the updated optimal control solution. Although this represents a single

case, the experimental implementation of feed-forward optimal control solutions is

only representative of an entire class of controllers that cannot currently be imple-

mented. The ability to implement this class of controllers will greatly increase the

functionality of satellite attitude simulators. In addition to implementing controllers

that cannot currently be implemented, an increased characterization and disturbance

torque reduction will allow for better experimental validation of simulated results for

all controllers. This would allow a more in-depth analysis of the controllers and will

ultimately result in a more seamless technology transition to operational satellites.

1.6 Dissertation Overview

This dissertation has six chapters, of which Chapters III through V are indepen-

dent scholarly articles which are explained in Sections 1.6.1- 1.6.3. Although each

of the three articles presented in Chapters III through V include a brief overview of

the previous research that was critical to the research conducted within each chap-

ter, Chapter II presents broader, more in-depth overview of the previous research

conducted on the three presented topics.

1.6.1 Mass Moment of Inertia Estimation for Terrestrial-Based Satel-

lite Simulators.

Chapter III addresses the in-flight estimation of the mass moment of inertia. The

estimation process was developed in order to increase precision by reducing the num-
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ber of assumptions implemented during the estimation of the POI as well as increase

accuracy by correcting for disturbance torques that had been previously ignored. Ad-

ditionally, the methodology has the benefit that it is not subject to errors associated

with time delays.

1.6.2 Experimental Identification and Correction of Disturbance

Torques.

Chapter IV presents the development and experimental verification of an approach

to identify and reduce three types of disturbance torques that contaminate the experi-

mental results of terrestrial-based satellite attitude simulators. The previous research

on disturbance torque characterization and on balancing of satellite attitude simu-

lators include a rigid body assumption. Although this assumption may be valid for

many satellite attitude simulators, the research presented in Chapter IV evaluates the

validity of the rigid body assumption when attempting to balance a terrestrial-based

satellite simulator. Once the assumption is deemed invalid, a new balancing method-

ology is developed. Unlike previous balancing methodologies which implemented the

rigid body assumption–referred to as “static” balancing–this balancing methodol-

ogy may vary as SimSat changes orientation resulting in a “dynamic” approach to

balancing. As a result, Chapter IV covers the development, implementation, and

experimental validation of a methodology to correct for a dynamic imbalance of a

satellite attitude simulator necessary in the presence of structural deflection.

1.6.3 Hardware Testing of Hybrid Steering Logic.

Single gimbal control moment gyroscope arrays experience multiple types of singu-

larities as will be explained in further detail in Chapter V. There are various steering

laws able to avoid singularities, but most are best implemented in the proximity of
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a specific type of singularity. Hybrid Steering Logic is a recently developed SGCMG

steering law that has been shown in simulation to be able to avoid multiple types of

singularities while inducing adverse effects of singularity specific steering laws. Chap-

ter V presents the experimental results of Leve’s [21] HSL algorithm on SimSat and

consists of the comparison of HSL to LG and SDA. One of the main reasons it was

included in this dissertation is that it represents one of the vital roles in 3-degree-

of-freedom (DOF) satellite attitude simulators, analysis of CMG steering laws, and

is a prime example to the importance of the reduction of gravitational disturbance

torques. In this experimental validation of Leve’s HSL algorithm, a single maneuver

is repeated with the CMG in three different configurations. The reason the CMG

are in these specific configurations is that the purpose of the research is to determine

the controllers’ ability to sense and avoid the singularities that the CMG array is in

proximity to in two of these three orientations. The singularities in the CMG array

are dependent on the angular momentum of the CMG array and the presence of large

disturbance torques may cause the array to re-orient to a less singular configuration,

resulting in inconclusive results. This effect would only be exacerbated for future

research efforts into the hardware testing of singularity escape algorithms [38].
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II. Related Work

In this chapter, we will discuss related work in MOI estimation, disturbance torque

characterization, and dynamic balancing of satellites and satellite attitude simulators.

For a comprehensive background paper on types of satellite simulators and various

experiments conducted before 2003, we will refer the reader to a paper written by

Schwartz [32]. The research presented in this dissertation concentrates on the pre-

vious research pertaining to mass characteristic estimation and automatic balancing

methods with an emphasis on the disturbance torques that exist when attempting

to implement a terrestrial-based satellite attitude simulator to estimate in-orbit atti-

tude dynamics [34]. First, we will discuss the differences between the MOI estimation

methods by looking at the equations of motion that govern satellite attitude dynam-

ics.

2.1 Governing Equations of Satellite Attitude Dynamics

The primary equations for satellite attitude dynamics and control are Euler’s

equations.

I�̇ω = −�̇hacs − �ω ×
(
I �ω + �hacs

)
+ τerr (2.1)

where I is the mass moment of inertia, �̇ω is the angular acceleration of the spacecraft,

�̇hacs is the time derivative of the angular momentum of the Attitude Control System

(ACS), and τerr are the disturbance torques. Equation (2.1) will be covered in more

detail in the Chapter III but for now we will simply introduce the equations as a means

to compare some of the MOI estimation methods. In addition to Euler’s equation we

will define the angular momentum of the spacecraft �Q as

10



Qx = Ixxωx + Ixyωy + Ixzωz

Qy = Ixyωx + Iyyωy + Ixzωz

Qz = Ixzωx + Ixyωy + Izzωz

(2.2)

where Qx, Qy, and Qz are the angular momentum of the spacecraft in the X−,

Y−, and Z−axis, respectively. Many MOI estimation methods rely on variations of

Eqs. (2.1) and (2.2) to estimate the MOI and POI [20; 16]. It is important to note

that the estimation of �Q require data from the ACS and the estimates of ω require

data from the inertial measurement unit (IMU). Since the MOI and POI estimates

require data from two different sensors, if either sensors has a time-delay in reporting

the data then the MOI estimation will be comparing data from different time-steps.

This difference in the reporting times can result in an error in the MOI estimate and

in this dissertation that error will be referred to as the error associated with time

delays.

ω̇ �= 0. (2.3)

If we assume the spacecraft starts at zero angular momentum we can define the

instantaneous MOI estimation as the ratio of the two components

I =
hrw

ωsc

(2.4)

where I is the MOI estimate about the rotation axis, hrw is the angular momentum

estimate calculated from the RW angular velocity measurements and ωsc is the angular

velocity measurements from the IMU. Table 2.1 shows the four possible outcomes

that would result from a time difference in the data received from the IMU and the
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RW angular velocity measurements.

Table 2.1. Results of Time Delays on MOI Estimation

IMU Leads RW Data IMU Lags RW Data
Angular Acceleration MOI Underestimation MOI Overestimation
Angular Deceleration MOI Overestimation MOI Underestimation

Although not explicitly identified in previous orbital MOI estimation methodologies,

this can be mitigated on-orbit by implementing long maneuvers with mostly constant

angular velocity. With rotation and experiment duration limitations for terrestrial-

based satellite attitude simulators the error associated with time delays must be

mitigated through alternative means. As a result, we will consider a method’s ability

to correct for time delays when analyzing an MOI estimation method.

Additionally, the disturbance torques acting on the satellite attitude simulator

will integrate and introduce errors in the angular momentum estimate

I =
−hrw

ωsc

+

∫
τerr
ωsc

. (2.5)

If we express the disturbance torques as a Taylor series expansion about a neutral

position, in our case we define the neutral position as SimSat Z−axis being aligned

with the negative gravity vector, we can approximate the disturbance torque as

τerr ≈ τ0 + τ1δθ +
τ2δθ

2

2!
+ H.O.T. (2.6)

where θ is the angle between SimSat’s Z−axis and the negative gravity vector. We

can then approximate the MOI estimate as

I =
−hrw

ωsc

+

∫
τ0

ωsc

+

∫
τ1θ

ωsc

+
τ2δθ

2

2!ωsc

+

∫
H.O.T.

ωsc

(2.7)

In this form it is apparent that non-zero disturbance torques may introduce errors to
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the MOI estimate. As a result, we will assume that the disturbance torques on SimSat

can be approximated as a zero-order torque plus a first-order torque and the MOI

estimation method must have a means to correct for these two components of torque.

We will then experimentally validate that second-order torques and the higher-order

terms (H.O.T.) are trivial for the small maneuver that will be implemented.

2.2 SimSat II

The Air Force Institute of Technology (AFIT) SimSat was developed in 1999 by

Colebank et al. [4] The original design was a dumbbell configuration allowing for

full rotation about two axes and partial rotation about the third axis. Additionally,

the original SimSat used pressurized air in a thruster simulator to dump the built-up

angular momentum of the spacecraft. Two disadvantages of the cold-gas thruster sys-

tem were that the thrusting would induce imbalances in the spacecraft that hindered

the reproducibility of the experiments and the amount of air required meant limiting

experiment duration to approximately 15 minutes. This first iteration of SimSat also

experienced large gravitational disturbance torques due to a structural sag when ro-

tating about the X−axis. The platform was reconfigured in 2008 by Roach et al. [30]

from a dumbbell to a tabletop configuration. In order to reduce disturbance torques

associated with thrusting and increase the length of the experiments, the air thrusters

were replaced by three fan couples powered a pair of 5.5 Ah, 38 volt batteries allowing

for continuous operation up to two hours.

2.3 Survey of MOI Estimation Techniques

The first paper presented in this dissertation (Chapter III) consists of a novel

method of estimating the MOI of a terrestrial-based satellite attitude simulator. In

this section, we will discuss previously developed MOI estimation methods and briefly
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explain how the research presented in Chapter III differs from previous methods.

2.3.1 Direct Measurement.

When referring to direct measurement, we mean a methodology that does not rely

on the onboard attitude control system, rather, it is done by external means. Such

methods would include using a torsional [39] or bifilar pendulum [15] to estimate the

MOI. The benefit to this methodology is that instead of a direct comparison to Euler’s

equations when using an on-board ACS, the equations of motion of pendulum motion

are evaluated to estimate the resistance to angular acceleration. Instead of attempting

to compare noisy sensor data instantaneously when using on-board ACS data, the

pendulum oscillation frequency is estimated, which can be globally smoothed for

highly precise estimations. Although these direct methodologies are highly accurate,

there still exists a very strong desire to obtain this degree of precision from in-flight

maneuvers. As a result, we will focus on evaluating in-flight estimation methodologies.

Before leaving this discussion on direct measurements, it is also important to iden-

tify a potential methodology for POI estimation. Wiener and Boynton [39] estimated

the POI of an object by implementing a “Moment of Inertia Method.” The method

relies on the fact that plotted magnitudes of the mass characteristics in Cartesian

space will result in an ellipsoid. Wiener and Boynton estimate the MOI about three

test axis in a plane. From these three measurements, the MOI ellipse that is a cross

section of the MOI ellipsoid can be estimated. Repeating this process about all three

principal planes will result in the complete characterization of the ellipsoid. In Chap-

ter III, we will implement a similar methodology, only we will be over-determining

the system of equations and solving for the entire ellipsoid simultaneously. Further

improvements include using a static optimization approach to account for differences

in precision that may result from different maneuvers being dependent on multiple
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RW.

2.3.2 In-Flight and Simulated MOI Estimation.

Due to the change in mass over the course of the satellite’s life from the expenditure

of propellant for momentum dumping and thrusting for station keeping, the satellite

MOI is often re-estimated on-orbit. It is important to note that most of the on-orbit

estimation processes rely on the assumption that there are no disturbance torques.

This disturbance torque assumption will be shown invalid for terrestrial-based satellite

attitude simulators in Chapter III. The following are examples of on-orbit MOI

estimation.

Tanygin and Williams [35] not only used the conservation of angular momentum

to estimate the MOI but they included conservation of energy into their analyses. By

adding an additional constraint

dE

dt
=

d(1
2
Iω2)

dt
= 0 (2.8)

they were able to better reject sensor noise and get a more precise estimation of the

mass properties. By estimating the MOI during coasting maneuvers, they conserved

not only momentum but also energy. By estimating both the energy and angular

momentum, they were able to better reject noisy measurements and increase the

precision of their estimate. The methodology also includes a rigid body assumption

and a zero disturbance torque assumption.

Bordany et al. [2] developed an Extended Kalman Filter (EKF) to estimate the

mass properties in real time as well as the thruster characteristics of the UoSat-12.

In order to estimate these properties, the researchers assumed that the satellite was

a rigid body experiencing no disturbance torque and had zero errors associated with

time delays. Admittedly, the time delay assumption could be accounted for in using
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Bordany’s methodology which would require that all time delays be very well under-

stood, a condition which is not easily satisfied, as discussed later in Subsection 2.3.3.

Wertz and Lee [20] estimated the MOI and POI of the Cassini spacecraft. During

the estimation process, Euler’s equations were greatly simplified by implementing pure

rotations about a single axis. Wertz and Lee implemented the assumption that with

a pure rotation about a body axis they can remove all inertial tensors not pertaining

to the test axis allowing for easier estimation of the POI about the test axis. The

assumption reduces Eq. (2.2) to

Qx ≈ Ixxωx

Qy ≈ Ixyωx

Qz ≈ Ixzωx

(2.9)

Once the assumptions in Eq. (2.9) were implemented, a least-squares estimation of

the MOI and POI were calculated using the RW angular momentum data and the

spacecraft angular velocity readings. Although the assumption shown in Eq. (2.9) may

appear valid on the surface, due to the presence of sensor noise and other unmodeled

variables we cannot guarantee a pure rotation about the test axis which can introduce

errors in the estimates of Ixx, Ixy, and Ixz. As a result, the assumption that we can

experimentally implement a pure rotation about the test axis on SimSat will be

scrutinized in Sec. 3.3 and subsequently the assumption will be deemed is invalid for

SimSat.

Research conducted by Ferguson [7] concluded in the design and implementation

of an EKF to estimate the MOI matrix similar to Bordany, with an emphasis on IMU

biases as opposed to thruster parameters. Similar to Bordany [2], the EKF designed

by Ferguson required a rigid body assumption with zero disturbance torques and well
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characterized time-delays.

Kim et al. [16] proposed an MOI estimation technique referred in the paper as

a modified law of conservation of angular momentum and tested on STSAT-3. The

assumption is that the angular momentum as a result of the POI is negligible when

compared to the angular momentum due to the MOI. The assumptions implemented

reduce Eq. (2.2) to

Qx ≈ Ixxωx

Qy ≈ Iyyωy

Qz ≈ Izzωz.

(2.10)

The assumption implemented by Kim et al. has the possibility of introducing addi-

tional errors similar to Wertz and Lee [20] but for different reasons. Wertz discarded

components of the angular momentum due to the assumption that a pure rotation

about a body axis can be implemented while discarding the angular momentum asso-

ciated with the non-test axes, this assumption will be analyzed further in Chapter III.

Kim implemented a complex rotation and estimated the angular momentum about

all three axes but implemented the approximation that the angular momentum of

the platform was due to the MOI while discarding the angular momentum due to the

POI. If the POI are sufficiently small then Kim’s assumption is valid; however, as

the POI for SimSat are unknown this method was also rejected.

Due to the micro-torque environment of space, all of the on-orbit estimation meth-

ods were able to assume that the disturbance torques were zero. This allows for large,

long maneuvers without having to correct for disturbance torques. As we will show

in this research that is not always the case for satellite attitude simulators. The next

section discusses terrestrial-based mass characterization estimation.
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2.3.3 Terrestrial-Based Satellite Attitude Simulators.

Terrestrial-based satellite attitude simulators are geometrically limited to rotate

about the center of an air-bearing, not necessarily the center of mass. As a result,

there are potentially large disturbance toques that can be generated as a result of

any distance between the center of gravitational force and the center of rotation. Ad-

ditionally, as the forces acting on the satellite simulator rotate with respect to the

spacecraft as it slews, it is possible that the forces induce an imbalance that would

result in additional torques. In order to estimate the MOI, these disturbance torques

need to be accounted for. It is with an interest in the correction of these distur-

bance torques that we will analyze the previous MOI estimation methods. The first

terrestrial-based MOI estimation method we will discuss was developed on SimSat by

Dabrowski [6].

Dabrowski sought to identify a deviation in the MOI due to the presence of par-

asitic satellites. As a result, he was more concerned with the precision of the MOI

estimation than the accuracy. In his methodology, he implemented both a positive

step maneuver and a negative step maneuver about a desired test axis. The MOI was

estimated from the angular velocity measurements from each step maneuver, and

the two step maneuver results were averaged. By averaging the results from both

maneuvers, Dabrowski was able to correct for a constant disturbance torque but his

methodology is unable to correct for disturbance torques that vary as a function of

the spacecraft’s orientation, which will be shown to be a principal source.

During his analysis, Dabrowski analyzed three step maneuvers of various sizes in

an attempt to identify the precision available for in-flight MOI estimation. One of

the resulting conclusions from comparing three maneuvers was that Dabrowski was

able to identify that even the simple act of varying the size of the step maneuver

could greatly increase the obtainable precision. Although Dabrowski concluded that
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the precision of his MOI estimation methodology is dependent on the maneuvers

implemented, he stopped short of developing a maneuver specifically for the purpose

of further increasing the precision of the MOI estimation. Following Dabrowski’s

research, Dabrowski’s method was implemented by Geitgey [11]. He implemented the

same step maneuvers in an attempt to identify remaining on-board fuel. Afterwards,

the method was also attempted by Hines [13]. An additional consideration is that

Dabrowski’s method had no way of correcting for errors in the estimation as a result

of time delays as discussed earlier in this chapter.

Schwartz and Hall [31] experimentally compared four methods, the torque method

and the momentum integral method evaluated with three different smoothing method-

ologies, for MOI characterization and introduced a novel method for the correction

of errors associated with time delays. Their methodology was applied to both simu-

lated results with 10% sensor noise as well as experimental results from an air-bearing

satellite attitude simulator. The simulation results were compared against truth, and

the experimental results were compared against an a-priori MOI estimation from a

summation of parts from the CAD design. They applied a step maneuver about

the Z−axis and compared the various results against truth for the simulations and

against an a-priori estimate for the experimental results. In addition to directly im-

plementing and comparing the four MOI estimation algorithms, they implemented a

methodology for the correction of errors associated with time delays. During simu-

lation with truth data, they analyzed the sensitivity to time delays and noticed that

certain MOI and POI components were under-represented by the MOI estimation

algorithms for both time advances, as well as time delays. This resulted in peaks

at time delay equal to zero. After the experiments were conducted, the MOI and

POI estimations were plotted as a function of the time delay. With this in mind,

they estimated the MOI and POI for a range of given time delays and chose the time
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delay associated with the peak MOI estimated value. Although this method allows

for the estimation and correction of errors associated with time delays, the method

was only shown for a specific case and no inferences to the global applicability were

made. Additionally, the experiment was conducted only about the Z−axis and no

corrections for disturbance torques were implemented. Although this methodology

may be valid for rotations about the Z−axis, this method cannot be implemented

to estimate the MOI about all three axes and the correction of disturbance torques

must also be considered.

Kim and Agrawal [19] conducted a series of experiments on the mass characteris-

tic estimation and the imbalance estimation of satellite attitude simulators. The first

component of their research consisted of simultaneously estimating the mass charac-

teristics and imbalance of the satellite simulator using a batch estimation technique.

The second component of their research consisted of developing a recursive estima-

tion for the imbalance and will be discussed in more detail in Sec. 2.4.3. The batch

estimation method for estimating the MOI and the imbalance, although successful,

was based on the assumption that the spacecraft was a rigid body and assumed that

there were no errors associated with time delays.

Norman and Peck [28] took a step towards the methods that had been implemented

on-orbit by designing an EKF to simultaneously estimate both the MOI and RW

misalignment. Similar to the previously implemented on-orbit EKF, Norman and

Peck implemented the assumptions that the platform was a rigid, there were zero

disturbance torque, and that there were no errors associated with time delays.

In this section we discussed existing methods to estimate the MOI and POI of

terrestrial-based satellite attitude simulators with an emphasis on the assumptions

that each researcher implemented. In the next subsection, we will briefly describe

the proposed research effort and how it differs from the previous methods and the

20



previously implemented assumptions.

2.3.4 Proposed Mass Moment of Inertia Estimation.

From Subsections 2.3.2 through 2.3.3 there were three recurring assumptions. The

first is that the satellite is assumed rigid. This assumption leads into the second as-

sumption that the disturbance torques are assumed to be zero or strictly a result of

the imbalance as is the case for Kim and Agrawal [19]. Although these two assump-

tions may be valid for on-orbit satellites, these assumptions should be verified for

terrestrial-based satellite attitude simulators. As gravitational forces are applied to

the mass of the satellite simulator, torques are induced. Although the torque about

the center of rotation may be counteracted by an equal and opposite disturbance

torque due to a second mass attached in the opposite side, the torques themselves

induce stress on the structure of the satellite simulator. This stress and corresponding

strain cannot be as easily corrected as a simple static imbalance. As a result, higher

order disturbance torques need to be analyzed to ensure accuracy of MOI estimation.

The third assumption corresponding to the previous research is that there are no

errors associated with time delays. There is an exception in the work of Schwartz

and Hall [31] but the methodology that they implemented to identify and correct for

time delays was subjective and possibly spacecraft and maneuver dependent.

The research conducted in Chapter III focuses on an increase in precision and the

correction of errors associated with time delays. Additionally, Chapter III addresses

the rigid body assumption and designs and implements a maneuver that is capable of

identifying a failure in the rigid body assumption. After the rigid body assumption is

deemed invalid, we design and implement a methodology for correcting for the first-

order disturbance torques associated with structural deflection allowing for inferences

not only into the precision of the MOI estimation methodology, but also allowing us
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to estimate the accuracy of the MOI estimation.

2.4 Survey of Disturbance Torque Reduction in Satellite Attitude Simu-

lators

As stated in Subsection 2.3, Chapter III focuses on the applicability of assump-

tions and the accounting for disturbance torques during an MOI estimation procedure.

This section focuses primarily on looking at work completed by other researchers to

reduce the disturbance torques encountered by satellite attitude dynamics simula-

tors. In doing so we will focus on the assumptions that were required to implement

the disturbance torque reduction methodology and analyze the validity of the as-

sumptions on SimSat. After the assumptions were deemed invalid we developed a

novel methodology for the reduction of gravitational disturbance torques. This sec-

tion addresses the previously developed methods for the reduction of gravitational

disturbance torques as well as the assumptions that were implemented during the

development of the gravitational disturbance torque reduction process. First, we will

discuss the characterization of disturbance torques.

2.4.1 Disturbance Torque Characterization.

As referenced by Schwartz [32] in the historical review of air-bearings, Smith [34]

derived the equations of various disturbance torques experience by satellite attitude

simulators. During Smith’s derivation of the disturbance torque associated with struc-

tural deflection, he assumed that the spacecraft was perfectly rigid in the X−Y plane

and only derived the disturbance torques associated with a deflection in the Z−axis.

As a result, the equations for the disturbance torques due to structural deflection

were underrepresented for small rotations. Subsequently, research concentrating on

the disturbance torque reduction has focused on the avoidance of structural deflec-
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tions instead of the identification and correction of the disturbance torques due to

structural deflections.

2.4.2 Avoidance of Structural Deflection.

A good example of the emphasis on the avoidance of structural deflections is shown

by Mork and Wheeler [27] who analyzed possible solutions to simulate on-orbit struc-

tural oscillations without having to induce terrestrial-based gravitational disturbance

torques due to structural deflections [27]. Mork and Wheeler theorized that the re-

active torques due to the structural oscillations can be emulated experimentally with

an applied torque. A similar method was implemented by Liu et al. [24] in which

the disturbance torques associated with the structural deflections were estimated and

experimentally implemented to the air-bearing satellite attitude simulator by means

of an applied torque. This allowed for experimental results for controls of flexible

spacecraft without needing to attach flexible appendages that are intrinsically prone

to gravitational disturbance torques. Although these methods are capable of simu-

lating structural deflections without imparting structural deflections, they maintain

the assumption that the spacecraft is rigid and do not address what occurs when

structural deflections occur. Once one makes the assumption that the spacecraft is

rigid, they typically focus on balancing the satellite attitude simulator. Balancing

can often be tedious and time consuming, which typically leads to an effort focused

on automating the balancing process. The following section discusses how various

researchers have addressed the problem of automatic balancing.

2.4.3 Automatic Balancing of Satellite Attitude Simulators.

Hatcher and R. Young [12] developed and analyzed an automatic balancing system

for air bearing satellite attitude simulators. The research was primarily focused on
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the design and validation of an analog circuit to command a step-motor to move the

masses into the desired position using. The system split the signal being sent to the

torque inducing actuators being used by the ACS which resulted in a mass position

change along with a control torque. Although the system showed much promise in

the X − Y plane, it did not include balancing in the Z−axis.

A more modern approach to automatic mass balancing comes from J. Young in

the form of the Dynamic Identification and Adjustment of the Mass Center [42]. In

his research Young uses a coasting maneuver and estimates the disturbance torques

to calculate an estimate of the imbalance. This method implements balancing process

and an iterative approach to converge to the correct balance.

Prado [29] implemented a balancing technique very similar to Young only Prado

did not have an enabled control torque source and used the weights themselves as the

control torque. Additionally, Prado compared his method with the method developed

by Young and was able to duplicate the level of precision obtained by Young while also

concluding that Prado’s method was able to obtain approximately 50% better balance

in the X−Y plane. Up to this point, we have discussed balancing algorithms that are

implemented using specific maneuvers and procedures, the following methodologies

can be implemented in real-time without the need for specific pre-flight maneuvers.

This differs from more recent research efforts to estimate and correct for the im-

balance real-time with an EKFs. As suggested earlier in Subsection 2.3.3 the second

component of Kims [19] research consisted of designing and experimentally imple-

menting an EKF for real-time estimation of the imbalance of the spacecraft and using

the results from the EKF to command actuators to drive the imbalance to zero. Kim

and Agrawal [18] continued their research by comparing two different automatic bal-

ancing methods, batch estimation and real-time estimation. The conclusion was that

they were able to get comparable results with the EKF even through concerns about
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closed-loop stability of active balancing process. The work by Kim and Agrawal has

been continued by other researchers. Li and Gao, [23] successfully implemented the

batch balancing algorithm on the air-bearing satellite attitude simulator at Shenyang

University of Technology. Additionally, Chesi et al., [3] advanced the EKF developed

by Kim and Agrawal by showing that Lyapunov Stability existed in the closed-loop

controller that consisted of using the estimated imbalance to command actuators to

correct for the estimated imbalance and drive the imbalance to zero.

2.5 Recent Advancements in Alternatives to 3-DOF Satellite Attitude

Simulators

In addition to 3-DOF satellite attitude simulators there has been an increased

amount of interest in 6-DOF satellite attitude simulators. The translational compo-

nent allows for researchers to not only analyze attitude dynamics and control, but also

translational controls required for orbital rendezvous [10; 36]. Although the additional

degrees of freedom are necessary for orbital rendezvous, the added complexity is not

necessary for the development and validation of satellite attitude control algorithms.

In addition to 6-degree-of-freedom satellite attitude simulators, a second alterna-

tive to air-bearing satellite attitude simulators is the emerging CubeSat. The CubeSat

is an orbital platform that allows for the analysis of satellite attitude control algo-

rithms in the environment that they were designed to operate in and is therefore

much more desirable as a research platform as it is not prone to the disturbances

experienced by satellite attitude simulators. One drawback to CubeSats is the size

constraint specifically when attempting to research more complex ACS such as a

CMG array. Not only is there a volumetric geometric constraint, but this constraint

is exacerbated by the increased complexity of the equations of motion as some of the

assumptions that hold true for larger CMG arrays will not necessarily hold true for
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miniaturized CMG arrays [21]. As a result, although there are currently competing

research platforms the 3-DOF remains and will remain a crucial component to the

validation and verification of satellite attitude control algorithms.

After analyzing the current MOI and POI estimation methodology, we conclude

that all of the methods available for implementation on terrestrial-based satellite

simulators implement assumptions that may not be valid for SimSat. Without vali-

dating and verifying these assumptions on SimSat we cannot guarantee that we will

obtain the precision and accuracy desired to meet future research objectives such as

the analysis of feed-forward controls. In the next chapter, we will analyze the previ-

ous assumptions on SimSat, and ultimately develop a novel method to estimate the

MOI matrix of a satellite attitude simulator while accounting for time delays and

gravitational disturbance torques.
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III. Mass Moment of Inertia Estimation for

Terrestrial-Based Satellite Simulators

The purpose of this research effort is to improve upon current maneuver-based

MOI estimation methodologies in an attempt to achieve the higher precision previ-

ously reserved for direct measurement techniques. This paper will discuss the ad-

vantages and disadvantages of existing MOI estimate maneuvers before presenting a

different approach that is dependent on the three key components that are the POI

estimation methodology, the selection of the estimation maneuver, and the character-

ization and correction of the disturbance torques. Three components were chosen to

specifically increase both the precision and accuracy of maneuver-based MOI matrix

estimation. The POI methodology was chosen to minimize the number of assump-

tions, such as the pure rotation about the test axis [20], while increasing the precision

of the POI estimation method. A maneuver was constructed using lessons learned

from other researchers, while making inferences based on the capabilities and lim-

itations pertaining to but not specific to the AFIT air-bearing satellite simulator

known as SimSat. Additionally, because SimSat utilizes an air bearing, similar to

air-bearing platforms characterized by other researchers, considerations were taken

to approximate and subsequently characterize the disturbance torques which could

lead to additional errors in the MOI approximation. Although it is not uncommon

for terrestrial-based satellite simulators to account for zero-order disturbance torques

during MOI estimation [6], this research will expand this process to account for both

zero- and first-order disturbances to ensure an accurate MOI approximation. The

entire process was experimentally evaluated on AFIT’s second generation satellite

simulator SimSat and the experimental results are discussed.
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3.1 Introduction

A spacecraft’s moment of inertia (MOI) is a measure of its resistance to torque.

The MOI matrix is symmetric positive definite matrix composed of six components,

the three major components along the diagonal are known as the moments of inertia,

and the three off-diagonal components are referred to as the products of inertia. The

effects of these components can be seen in Eq. (2.1). Knowledge of all six values is

critical to performance associated with attitude control and estimation while reorient-

ing a satellite. Whether it is tuning a closed-loop controller or calculating open-loop

optimal controls, errors in MOI approximations will result in decreased performance.

In order to accurately estimate the MOI of spacecraft, high fidelity finite element

models are commonly utilized and often the MOI is measured directly before the

satellite is launched. While this process allows for a high fidelity estimation early

in the spacecraft’s lifespan, spacecraft have a decreasing MOI as on-board propel-

lants are expended for station-keeping maneuvers or angular momentum dumping.

As a result, even though the MOI for the spacecraft might have been well known

before launch, it is often advisable to re-estimate the MOI using a maneuver-based

MOI estimation method. However, accurate MOI approximation isn’t only necessary

for actual satellites; satellite attitude simulators, such as the Air Force Institute of

Technology’s SimSat, also need a high-fidelity MOI approximation when conducting

controls-based research.

Satellite attitude simulators are often used to test controllers that may be too

aggressive for immediate on-orbit implementation [41]. It is desirable for satellite

attitude simulators to behave as much like a spacecraft as possible; which results in

the desire to know the MOI to within tolerances desired on-orbit. Obtaining this level

of accuracy however, is difficult as disturbance torques present in a lab environment,

such as torques due to an imbalance or structural flexing, result in a requirement for
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smaller, shorter maneuvers than those obtainable on-orbit [6]. Although the MOI of

a satellite simulator could also be measured directly through the use of a torsional

pendulum, similar to a real satellite is measured before launch, this is not always a

practical estimation method as the tests can be time consuming and cost-prohibitive.

Additionally due to ease of access, configuration changes on satellite simulators are

made frequently and quickly. These configuration changes can typically be made in a

matter of days and sometimes hours. Rapid configuration changes combined with the

impracticality of physical measurements make MOI approximation maneuvers highly

desirable as a maneuver can be re-executed resulting in a new MOI approximation

within an hour or two. Additionally, unlike direct measurements, a maneuver-based

MOI estimation methodology can be easily implemented on-orbit allowing for an in-

creased MOI precision. This is beneficial not only to performance obtained when

correctly tuning controller gains, but may also allow for increased precision towards

identification of remaining onboard fuel [11] or maybe even allow for future identifi-

cation of parasitic satellites [6].

Although maneuver-based MOI estimate methods are desired for increased on-

orbit MOI estimation capability, the degree of precision with the existing maneuver-

based MOI estimation methodologies leaves much to be desired, and without con-

sideration of first-order disturbance torques the accuracy cannot be verified when

attempting to implement on satellite simulators. Current MOI estimation methods

have been shown to be precise, with the standard deviations of multiple experiments

of approximately 2.5% of the mean value. Direct measurement tools such as torsional

pendulums can often achieve accuracies of within 0.35% of the actual value [39].

The purpose of this research effort is to improve upon current maneuver-based MOI

estimation methodologies in an attempt to achieve the higher precision previously

reserved for direct measurement techniques.
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3.2 Background

Due to the importance and need for an accurately estimated MOI, various MOI

estimation methods have been implemented by various researchers over the years.

Most of the existing estimation techniques can be broken into two categories: direct

measurement and maneuver-based. Furthermore, maneuver-based estimation tech-

niques can be further broken down into real-time and post-process estimation. This

section will briefly cover the advantages and disadvantages of the previously devel-

oped methods before explaining why a post-processing maneuver-based estimation

method is the preferred choice and the one implemented in this research. However, in

order to accurately analyze the alternatives, the disturbance torques that will affect

the processes need to be discussed as they contribute heavily to the decision making

process.

3.2.1 Disturbance Torques and Additional Error Sources.

In addition to the usual signal noise associated with measurement based estima-

tion, there are additional error sources that contaminate the measurement data of

satellite attitude simulators. The dominant disturbance torques can be considered a

function of the satellite simulator’s orientation, similar to how the torque on a pen-

dulum is dependent on the current position of the pendulum. If we define a neutral

position such that the satellite simulator’s Z−axis is aligned with the gravity vector,

then θ can be defined as the rotation about the X − Y plane resulting in a deviation

from this neutral state. The disturbance torques can then be characterized with a

Taylor Series expansion about the neutral position as a function of δθ. The order of

δθ that the torque produces will be considered the order of the disturbance torque.

The most common error source is due to the gravitational disturbance torque

associated with an imbalance of the satellite attitude simulator. Unlike rotating about
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the center of mass like real satellites do on orbit, satellite simulators on air bearings

are geometrically forced to rotate about the center of the air-bearing. As a result,

any misalignment between the center of mass and the center of rotation when crossed

with the gravity vector will generate a disturbance torque. This results in imbalance

in the X− and Y−axes producing zero-order torques as discussed later in Sec. 3.4,

while imbalances in the Z−axis results in a first-order torque and will be discussed

later in Sec. 3.5. Although great care is taken to balance satellite simulators before

every experiment, errors in the balance estimation will inevitably introduce additional

errors into the measurement data. In addition to the first-order torque resulting from

an imbalance in the Z−axis, a second first-order torque associated with structural

flexing is presumed to be present, and will also be discussed in Sec. 3.5. As a result, the

reaction wheel (RW) angular momentum data will need to be corrected for estimated

disturbance torques associated with both an imbalance as well as structural flexing.

Previous researchers accomplished zero-order torque correction through symmetry

by performing two similar maneuvers [6], one maneuver in both the positive and

negative directions and then averaging the results of the two. This method can be

successful in removing zero-order disturbance torques; however, this method cannot

correct for the first-order torques which are assumed to be present. As a result, a

successful MOI estimation methodology will need to allow for the identification of

disturbance torques as well as allow for the correction of experimental data to remove

the subsequent errors.

In addition to zero- and first-order disturbance torques, a second error source that

should be considered is the error associated with the time delays of the data from

the sensors. Maneuver-based MOI estimation processes depend heavily on collecting

data from multiple sources simultaneously. Due to the limited bandwidth of on-

board interfaces, typical data recorders cannot communicate with all of the on-board
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components at all time-steps. This fact is exacerbated by the on-board filters meant

to reduce the effective noise coming off of the sensors. As a result, the data from the

IMU will lag the RW data even though in reality the two actions occur simultaneously.

Therefore, the method must have the capability to identify and if present correct for

errors associated with delays between data collection from multiple sensors. Now that

we have discussed disturbance torques that satellite simulators are vulnerable to, we

now analyze potential MOI estimation methods.

3.2.2 Direct Measurement.

When referring to direct measurement, we mean a methodology that does not

rely on the onboard attitude control system. Such methods would include using a

torsional pendulum to estimate the MOI [39], or suspending the satellite simulator

on a bifilar pendulum [15]. These methods for MOI estimation have been shown to

be highly accurate, but were not selected for two major reasons. The first is that

satellite simulators, such as SimSat are prohibitively large (estimated mass of > 75

kg) it would be possible for direct measurement the larger mass would require the

acquisition of larger test platforms and was ultimately cost and time prohibitive. The

second reason that a direct estimation method was not attempted is that the research

could not then be expanded for implementation for on-orbit satellites. As a result, it

was concluded that the most benefit would be gained by developing a maneuver-based

MOI estimation method capable of higher precision and accuracy.

3.2.3 Maneuver-Based Estimation.

Maneuver-based MOI and POI estimation methods rely on attitude kinematics

and the on-board attitude control system. Controlling the attitude of a satellite

attitude simulator requires three basic components: a means of measuring the orien-
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tation, a means of calculating the desired torque, and means of applying the desired

torque. On SimSat these are an IMU which provides angular rates to a dSPACE

MicroAutoBox™ which integrates the angular rates and calculates the satellite sim-

ulator’s orientation. The dSPACE MicroAutoBox™ then uses a quaternion error

calculation to calculate the desired torque and then commands a three RW array in

order to provide the desired torque. The current SimSat configuration is shown in

Fig. 3.1(a) and the body axes which will be referenced later in the paper is shown

in Fig. 3.1(b). As mentioned earlier, maneuver-based estimation methods will use

the spin rates of the RWs and the angular velocity of the satellite simulator from the

IMU to estimate the MOI of the satellite simulator. Maneuver-based MOI estimation

methods can be separated into: real-time and post-processing estimation.

(a) AFIT Satellite Simulator SimSat (b) Body Axes superimposed on SimSat

Figure 3.1. AFIT SimSat and the Defined Body Axes

3.2.4 Real-Time MOI Estimation.

As the name suggests, real-time MOI estimation methods are designed to run

continuously, and estimate the MOI in real-time. Real-time estimation methodolo-

gies typically implement linear estimators to estimate the MOI and POI by using

differences between estimated states and measured states to calculate a recursive,
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least-squares estimate of the MOI and POI. This has previously been implemented

by the Naval Postgraduate School [17]. There are many benefits to real-time estima-

tion methodology including the most obvious that the estimator is always running

and that there is no need for dedicated estimation maneuvers. Any maneuver should

theoretically allow for eventual convergence of the estimator. Additionally, due to the

algorithm being able to run constantly, the method is able to actively correct for any

changes in the MOI due to slight mass position changes, such as slight mass movement

as a result of re-balancing. Despite the benefits, there are also some disadvantages to

this method of MOI estimation. The most critical is that there are two assumptions

that must be made in order to implement this estimation methodology. The first is

that the satellite attitude simulator is rigid and the second is that there are no errors

associated with time delays. Since neither of these assumptions have been verified for

SimSat, these estimation methods will be rejected in favor of a post-processing MOI

estimation method.

3.2.5 Post-Processing MOI Estimation.

The second main category of maneuver-based estimation, and the one chosen for

this research, is to estimate the MOI by post-processing the maneuver data. Not only

has this methodology shown benefit on-orbit[20] but post-processing should allow for

the removal of disturbance torques that terrestrial-based satellite attitude simulators

are prone to.

The methodology that was chosen is a continuation of the work performed by

Dabrowski [6] when attempting to estimate the MOI for the identification of par-

asitic satellites. The method was strongly based on the work performed by Wertz

and Lee on the Cassini spacecraft; however, the MOI matrix was assumed diagonal

and the POI estimation process was neither analyzed nor implemented. Additionally,
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during Dabrowski’s research effort three estimation maneuvers were performed and

evaluated against each other. Dabrowski’s research suggested that the precision of

the MOI estimation is highly dependent on the maneuver being implemented, but

stopped short of designing a maneuver specifically for the purpose of estimating the

MOI. This presented research effort picks up where Dabrowski left off where MOI

estimation maneuvers are designed to correct for some of the shortcomings previously

identified while accounting for additional platform limitations. In addition to over-

hauling the maneuver, the POI are no longer assumed to be zero and the single axis

MOI estimation methodology needed expanding to estimate the POI as well as the

MOI. As a result, the methodology and assumptions implemented by Wertz and Lee

for POI estimation is covered in detail in the subsequent section before being passed

over in favor of the “MOI” method for POI estimation in which a collection of MOI

estimates are used to simultaneously solve for the entire MOI ellipsoid [39]. This will

be followed by the development of a new MOI estimation maneuver and an analysis

of the zero- and first-order disturbance torques. All of the components will then be

combined experimentally to characterize the MOI matrix of SimSat.

3.3 Product of Inertia Estimation Methodology

Before settling on a methodology for POI estimation, the previous work per-

formed by Wertz and Lee is evaluated [20]. The methodology implemented on the

Cassini spacecraft was depended on two assumptions. The first of which is that

the disturbance torques are negligible. Although this is not a valid assumption for

terrestrial-based satellite attitude simulators, post-processing can be implemented in

order to correct for errors in the angular momentum build up in the RWs as a result

of the disturbance torques. The second assumption is that pure rotations about the

principal axes can be implemented, and this assumption will be analyzed in detail in
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this section.

The kinematic equations implemented to estimate the MOI and POI were based

on the conservation of angular momentum. First, Wertz and Lee [20] defined the

angular momentum of the spacecraft �Q as

�Q = I�w (3.1)

where �Q is an array containing the angular momentum of the spacecraft, �w is the

angular velocity of the spacecraft, and I is the MOI matrix and is defined as

I =

⎡
⎢⎢⎢⎢⎣

Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

⎤
⎥⎥⎥⎥⎦ . (3.2)

By multiplying out the vector product we obtain the following three scalar equations

Qx = Ixxωx + Ixyωy + Ixzωz

Qy = Ixyωx + Iyyωy + Ixzωz

Qz = Ixzωx + Ixyωy + Izzωz.

(3.3)

Wertz and Lee’s assumption was then made that a rotation only about the X−axis

(ωy = ωz = 0) would result in the following

Qx ≈ Ixxωx

Qy ≈ Ixyωx

Qz ≈ Ixzωx

(3.4)
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Wertz and Lee were then used these equations to solve for Ixy and Ixz. Although this

assumption is highly desirable due to the fact that it greatly reduces the complexity

of the problem, the validity of the assumptions need to be verified. As a result, the

absolute value of the IMU data on SimSat was analyzed and is shown in Fig. 3.2. This

figure shows us that the noise for our accelerometer is approximately on the order of

10−4 radians per second, while our maneuver is only on the order of 10−2 radians per

second.
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Figure 3.2. Absolute Value of Fiber-Optic Gyroscope Angular Velocity Data versus

Time

Figure 3.2 shows the maneuver about ωx and the subsequent sensor noise in the

Y− and Z−axes. The data suggests that assuming that the angular velocities in the

other two axes are zero might be valid. However, if we consider Eq. (3.4) to be a

collection of four assumptions instead of just two, we can better analyze the validity

of the assumptions. Considering only the X−axis, the following four assumptions

can be made
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ωx > ωy

ωx > ωz

Ixx > Ixy

Ixx > Ixz.

(3.5)

As shown in Fig. 3.2, our nearly pure rotation about the X−axis will result in the

first two equations being valid to approximately two orders of magnitude, and due to

the symmetry of SimSat, visible in Fig. 3.1, the POI are estimated to be at least an

order of magnitude smaller than the MOI. These four assumptions combine to result

in the following assumptions

Ixxωx � Ixyωy

Ixxωx � Ixzωz

(3.6)

being valid to approximately three orders of magnitude. Alternatively, if the angular

momenta in the Y− and Z−axes are considered, the following equations can be

concluded

ωx > ωy

ωx > ωz

Ixy < Iyy

Ixz < Izz.

(3.7)

As previously stated, the angular velocity in the X−axis is at least two orders of
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magnitude larger than the angular velocities in the Y− and Z−axes, and again the

POI are assumed to be at least an order of magnitude smaller than the principal

moments of inertia. However, unlike the X−axis, these two assumptions are not

compounded but instead detract. The ωy and ωz components are therefore only

estimated to be one order of magnitude smaller than the ωx components, not three

orders of magnitude smaller as was experienced in the X−axis. As a result, the four

Eqs. (3.7) are combined to conclude

Ixyωx �� Iyyωy

Ixzωx �� Izzωz.

(3.8)

The assumptions in Eq. (3.8) are applied to Eq. (3.3) resulting in

Qy ≈ Ixyωx + Iyyωy

Qz ≈ Ixzωx + Izzωz.

(3.9)

In order to reduce the risk of introducing errors into the MOI and POI estimation

process, we decided not to implement the assumptions implemented byWertz and Lee.

As a result, the products of inertia will not be calculated directly. This experiment

will only directly calculate the moments of inertia about the current maneuver axis,

but not the products of inertia. The following section will explain in detail the

implementation of the “moment of inertia” method for product of inertia estimation.

3.3.1 The “Moment of Inertia” Method.

Instead of trying to directly compute an estimate of the POI, this research will

estimate the POI by estimating the MOI ellipsoid. This method is similar to the
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two-dimensional analysis performed by Wiener and Boynton [39] that estimated the

two-dimensional cross-section of the MOI ellipsoid to simultaneously estimate two

MOI and the single POI. The two-dimensional method could be repeated about the

other two principal planes to estimate the other MOI and the other two POI. Instead

of multiple implementations of a two-dimensional method, this research will collect

all of the data first and then will simultaneously estimate the entire MOI matrix [39].

First, the equation for the MOI ellipsoid is identified as [37]

Ixxα
2 + Iyyβ

2 + Izzγ
2 + 2Ixyαβ + 2Ixzαγ + 2Iyzβγ = Ita (3.10)

where α, β, and γ are defined by the unit vector in the direction of the test axis. Let

n̂ be a unit vector in the direction of the test axis, then

n̂ = αî+ βĵ + γk̂ (3.11)

and Ita is the MOI about the test axis. As described in Sec. 3.3, each maneuver

will result in a single MOI estimation. As a result, a minimum of six independent

estimations are needed in order to solve Eq. (3.10). After a series of MOI estimations

are made about various axes, the MOI ellipsoid will be estimated, and the MOI

matrix can be calculated as described in Eq. (3.2). To ensure that the solution is over-

determined, twelve measurements are collected. To reduce measurement dependency,

a risk due to the symmetry of ellipsoids, the twelve measurements will be collected

in a single hemispherical quadrant as shown in Fig. 3.3.

In order to estimate the MOI about each axis, several runs are performed. The

measured MOI about the ith test axis, subsequently referred to as Imeasi , is defined as

the mean of the five estimations about the ith test axis. A corrected sample standard

deviation σmeasi is also calculated as
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Figure 3.3. Twelve Collection Axes as Represented by Points on a Sphere

σ̄measi =

√√√√ 1

n− 1

n∑
j=1

(Īmeasi − Imeasij)
2 (3.12)

where Īmeasi is calculated from the average of the five measurements

Īmeasi =
1

n

n∑
j=1

Imeasij (3.13)

where n is the total number of estimates about the ith axis and for these experiments

will be equal to five.

Once the twelve estimated mean values of Īmeasi are calculated, one may be

tempted to substitute the values of Īmeasi immediately into a least-squares estima-

tion; however, additional care is taken to consider the decreased precision that could

result from estimates that are a result of multiple RW required to work in unison.

As a result, each measurement was effectively weighed based on the precision of the

collection of measurements σmeasi . First Ixx, Iyy, Izz, Ixy, Ixy, and Iyz were initialized

with values of 8, 8, 12, 0, 0, and 0 kgm2 respectively. Then for each of the twelve

estimates, the unit vector in each direction n̂i was defined as

n̂i = αiî+ βiĵ + γik̂. (3.14)
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and αi, βi, and γi were substituted into the equation

Icalci = Ixxα
2
i + Iyyβ

2
i + Izzγ

2
i + 2Ixyαiβi + 2Ixzαiγi + 2Iyzβiγi. (3.15)

Once the twelve Icalci have been calculated, the twelve values of Icalci are substituted

into the standard deviation weighted cost equation

J =
12∑
i=1

(
Icalci − Īmeasi

σ̄measi

)2

. (3.16)

A static optimization algorithm was then implemented to iterate on Ixx, Iyy, Izz,

Ixy, Ixy, and Iyz while minimizing the cost function J . Though this method should

provide a high degree of accuracy for a provided dataset, additional steps are taken

to ensure that the dataset itself is highly accurate. The following section will discuss

the method for estimating each of the twelve MOI estimates.

3.3.2 Satellite Maneuver for MOI Estimation.

The previous work on MOI estimation on SimSat was conducted by Dabrowski

[6]. During the research effort, a series of step maneuvers was implemented in order to

estimate the MOI. An example of a maneuver implemented by Dabrowski is shown

in Fig. 3.4(a). One of the conclusions of Dabrowski’s work was that even slight

differences in maneuvers can result in as much as 50% increase in precision of the

MOI with the highest level of precision obtained of approximately 2.5%. In order to

further increase the precision, a sample maneuver was duplicated and analyzed. The

position data from the maneuver is shown in Fig. 3.4(a) and the angular velocity from

the IMU is shown in Fig. 3.4(b).

The first observation is that the maneuver is not very efficient, with only about

twenty seconds of data being collected from a fifty second maneuver. Although this

was of little concern when only needing to characterize three MOI values, when the
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Figure 3.4. Step Maneuver Angular Position and Angular Rates

methodology is expanded to characterize six components time efficiency becomes a

concern. Additionally, when considering Fig. 3.4(b) it becomes apparent that there is

a significant amount of noise from the IMU. One method that can be implemented,

when attempting to reduce the amount of noise in data, is to fit the data with a smooth

function. Unfortunately, at around the eleven and thirteen second marks of the first

step maneuver there are noticeable anomalies, a result of nonlinearities associated

with torque saturation of the RW motors. These anomalies are also present in each

of the three remaining maneuvers further suggesting this is not merely an isolated

incident. As a result, the function that we are attempting to fit is non-differentiable,

and any attempt to fit a smooth function to said non-differentiable function will

introducing errors associated with the Gibb’s phenomenon [9].

In addition to the shape of the function, the peak magnitude of the function must

also be considered. Although we will be removing errors associated with zero- and

first-order disturbance torques, there are expected to be still higher-order disturbance

torques, so the magnitude of the maneuver is also of significant concern. Meanwhile, if

a maneuver is too small there may not be enough information to correctly discern the

MOI estimate and we find ourselves in a trade-off. Once again, Dabrowski’s research
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provides some insight. The step maneuver shown in Fig. 3.4(a) was implemented

in three sizes, 0.5◦, 1◦, and 2◦ as shown in Fig. 3.4, with the most accurate of the

three appearing to be the 2◦ maneuver. This suggests that the additional informa-

tion gained by implementing a larger maneuver, up to at least 2◦, is more beneficial

than the higher-order disturbance torques associated with the larger maneuver were

detrimental. Combining all of these pieces of information, a smooth function, of ap-

proximately plus or minus 2◦, approximately 60 seconds duration, and able to reject

errors associated with time delays was deemed desirable. As a result, a maneuver in

the following form is suggested.

ω = A sin (2πft) (3.17)

where A is the amplitude of the sinusoid with units of radians per second to match

the units with the angular velocity of the spacecraft and f is the frequency in cycles

per second. The maneuver described in Eq. (3.17) was chosen because the measured

angular velocity data can be smoothed with a Fourier approximation for better signal

noise rejection. Additionally, instead of calculating the MOI directly using instanta-

neous comparisons of the angular momentum of the RW and the angular velocity of

the spacecraft ωsc, the following methodology was implemented to estimate the MOI.

First it is assumed that the angular velocity of the spacecraft is in the form

ωsc ≈ Aω sin(2πft) +Bω cos(2πft) (3.18)

where Bω is the result of a phase shift and is necessary to account for any time

delays between the desired maneuver, a sinusoid with zero phase shift, and the actual

maneuver. The amplitude of the oscillation of the spacecraft’s angular velocity Awsc

can then be calculated as

44



Awsc
= (A2

ω +B2
ω)

1/2. (3.19)

The process can then be repeated to calculate the amplitude of the oscillation of the

RW angular momentum. First the raw angular momentum data is measured using

the RW motor angular velocities provided by a shaft encoder attached to each of the

three RW motors. The angular velocities are then multiplied by the corresponding

flywheel MOI that were measured prior to installation and each RW angular momen-

tum is multiplied by the corresponding coordinate transformation and then summed

to calculate the angular momentum of the RW array in the body frame [25]. Once

the angular momentum of the RW array is known, a coordinate transformation is

used to isolate the RW angular momentum about the test axis and the remaining

RW angular momentum data is discarded. This can be done since a torque couple

for an angular momentum perpendicular to the test axis will result in a disturbance

torque. The data for hrw about the test axis is then used to calculate the coefficients

Arw and Brw that best fit the equation

hrw ≈ Ahrw
sin(2πft) +Bhrw

cos(2πft) + Chrw
. (3.20)

The amplitude of the RW angular momentum Ahrw
can then be calculated as

Ahrw
= (A2

hrw
+B2

hrw
)1/2. (3.21)

The estimated MOI of the spacecraft can then be calculated as

MOIest =
Ahrw

Awsc

. (3.22)

This method was implemented because it has the added benefit that any errors associ-

ated with time delays will manifest themselves in the phase information. As a result,

45



the amplitudes of the spacecraft angular velocity Awsc
and the amplitude of the RW

angular momentum Ahrw
are left relatively unaffected and therefore additional error

is not introduced into the MOI estimate. The next section discusses how A and f are

chosen for the experiments.

3.3.3 Maneuver Construction.

The values for the amplitude A and frequency f of the spacecraft maneuver are

determined by first considering the following relationship, given an equation for ω

ω = A sin (2πft) (3.23)

where the time derivative ω̇ is

ω̇ = 2πfA cos (2πft) . (3.24)

With the non-linearities associated with torque saturation producing the non-differentiable

maneuver shown in Fig. 3.4, it is inevitable that torque limitations be considered when

designing the new maneuver. The desire to stay within the linearity of a non-saturated

torque window results in the inequality constraint

|Itaω̇| = |Ita2πfA cos (2πft)| < |ḣmaxacs
| (3.25)

where Ita is the MOI about the test axis and ḣmaxacs
is the maximum available torque

from the ACS. Equation (3.25) can be rearranged to solve for the amplitude of the

desired oscillation A from

A <

(
1

2πf

)
ḣmaxacs Ita. (3.26)

Due to uncertainties in the MOI and the presence of additional disturbance torques,
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the available torque was reduced to produce a 50% safety margin. An additional

safety margin was implemented by substituting the largest expected MOI Imax into

Eq. (3.26). These two substitutions result in

Ades ≈

(
1

4πf

)
ḣmaxacs

Imax

. (3.27)

From here, a limitation of the experiment duration was used to determine the fre-

quency of the oscillation. The satellite simulator, SimSat, has repeatedly undergone

50-60 s maneuvers without risk of reaction wheel angular momentum saturation. As

a result, the desire was to keep the maneuver to approximately 50-60 s. Additionally,

in order to accurately estimate the linear trend in the angular momentum as a result

of zero-order disturbance torques, multiple complete cycles were desired. With this

in consideration, a period of 12 seconds was chosen as it would result in four complete

cycles, and is enough to clearly identify a linear trend in the RW data. By defining

the frequency f as

f �
1

12 s
(3.28)

substitution into Eq. (3.27) allows for the calculation of the desired amplitude of

Ades to be a maximum of 0.02 rad/sec. Substituting the calculated value for Ades into

Eq. (3.17) results in the equation for the desired maneuver rotation rate

ω = 0.02 sin

(
2πt

12

)
. (3.29)

In order to verify that the maneuver is approximately ±2◦, the size of Dabrowski’s

most effective maneuver while maintaining small higher order disturbance torques,

simple integration of Eq. (3.29) can be performed to conclude that the maneuver

will be approximately ±2.18◦ which is only slightly larger than the 2◦ maneuver
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implemented by Dabrowski. The maneuver was implemented on SimSat and the

measured rotation rate is shown in Fig. 3.5(a) and the corresponding RW angular

momentum is shown in Fig. 3.5(b). As evident in Fig. 3.5(b) there are significant

disturbance torques and in the next section we will discuss the effects of disturbance

torques on the data, and we will discuss the method we implemented to remove the

effects of zero-order disturbance torques.
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Figure 3.5. SimSat Angular Rates and RW Angular Momentum

3.4 Zero-Order Disturbance Torques

In this section, potential zero-order disturbance torques will be analyzed. One of

the largest disturbance torques on satellite attitude simulators is due to imbalance.

Since the satellite simulator rotates about the center of a sphere instead of the center

of mass, the displacement from the center of mass and the center of rotation, crossed

with the gravitational vector, generates a disturbance torque. Due to the severity

of the disturbance torque associated with imbalance, most satellite simulators have

balancing systems that allow for the platform to be crudely balanced. However,

since all balance methodologies rely on an estimation from noisy measurements, the

48



platform can never be perfectly balanced and the potential for disturbance torques

associated with imbalance need to be accounted for.

For a perfectly balanced satellite the disturbance torque may be negligible; how-

ever, if the satellite attitude simulator is not perfectly balanced, the resulting torque

could have adverse effects on the MOI estimation. Figure 3.6(a) depicts a perfectly

balanced satellite attitude simulator, and Fig. 3.6(b) shows the same satellite simu-

lator with a defined Cartesian “inertial” coordinate system. Since the center of mass

is exactly at the same location as the center of rotation, there is no torque associated

with an imbalance.

(a) Perfectly Balanced Satellite Simulator De-
picting Colocation of Center of Mass and Cen-
ter of Rotation

(b) Defined Inertial Frame with Origin at
Center of Rotation

Figure 3.6. Satellite Attitude Simulator and Inertial Coordinate System

Figure 3.7(a) shows a representative satellite simulator with a mass of my added

at a distance Ly in the Y−axis. The addition or presence of this mass in the Y−axis

generates a negative torque τxy
about the X−axis as a result of the imbalance in

the Y−axis. Subsequently, the term τxz
will later be used to denote the torque in

the X−axis as a result of an imbalance in the Z−axis. The torque τxy
equal to the

distance between the forces Ly times the magnitude of the forces which in this case

is my times the gravitational acceleration.
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(a) Satellite Simulator Imbalance Y -Axis (b) Torque Due to Imbalance in Y -Axis

Figure 3.7. Imbalance in Y -Axis and Subsequent Torque

Figure 3.7(b) shows the same satellite simulator after a rotation of θ about the

X-axis. In Fig. 3.7(b) it is apparent that the moment arm of the torque couple has

decreased as a function of θ, resulting in a disturbance torque of

τxy = −mygLy cos(θ) (3.30)

where θ is the angle of rotation about the X−axis.

For relatively small maneuvers like the one proposed in Sec. 3.3.2, the magnitude

of θ is less than 2.5◦ justifying implementing a small angle approximation to reduce

Eq. (3.30) to

τxy ≈ −mygLy. (3.31)

This disturbance torque can then be integrated over the period of 0 to t

hτxy(t) ≈

∫ t

0

−mygLy dt (3.32)

to calculate the change in angular momentum due to the presence of this disturbance

torque

50



hτxy(t) ≈ −mygLyt. (3.33)

This nearly constant torque for small angles would create a linear trend in the

angular momentum. Figure 3.8(a) shows the angular momentum of the RW array as

a result of the maneuver shown in Fig. 3.5(a), and Fig. 3.8(b) shows only the angular

momentum stored in the test axis. Additionally, Fig. 3.8(b) shows two parallel lines

to better emphasize the linear trend of the angular momentum. Since the maneuver

is intended to be pure rotation about the test axis, any angular momentum stored in

the non-test axis will produce a reactive torque that is also perpendicular to the test

axis. As a result, the angular momentum in the other axes can be disregarded.

It is apparent from Fig. 3.8(b) that there are disturbance torques that, if not

correctly accounted for, will introduce errors into the MOI approximation.

3.4.1 Removing Zero-Order Disturbance Torques.

Due to the shape of the maneuver, the angular momentum associated with the

maneuver is expected to be in the form of a linear combination of a sine and cosine

at a frequency of 1 cycle every twelve seconds. The zero-order disturbance torque is

expected to add a linear component with respect to time, and any transient angular

momentum would introduce an initial offset that is completely independent of time.

As a result, an equation for the angular momentum stored in the RW is assumed to

be of the form

hrw = mt+ b+D sin(2πft) + E cos(2πft) (3.34)

where hrw is the angular momentum of the RW array about the test axis; ω is the

frequency of the oscillation; and m, b, D, and E are coefficients that best fit the
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Figure 3.8. Sinusoid Maneuver Reaction Wheel Momentum and Spacecraft Rotation

Rates

measured angular momentum of the RW in the test axis. It is important that the

linear trend mt be removed since we are using a low-order Fourier approximation to

estimate the amplitude of the oscillation and any linear trend will result in errors in

the estimated amplitude and subsequent MOI estimate. To remove the effect of the

zero-order disturbance torque, the first-order term in the angular momentum data is

removed by calculating a corrected angular momentum h̃rw as
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h̃rw = hrw −mt. (3.35)

An example of what the RW angular momentum looks like before and after the linear

detrend are shown in Fig. 3.8(a) and 3.8(c) respectively.

Once the linear trend has been removed a second-order Fourier approximation is

then calculated for the RW angular momentum data and the MOI is estimated as

discussed in Sec. 3.3.3. In the next section, the MOI will be estimated about a single

axis. After the MOI is estimated about a single axis, the sensitivity to first-order

disturbance torques will be analyzed and a method to remove the first-order torques

will be developed and implemented.

3.4.2 Single Axis Results.

The RW angular momentum and SimSat maneuver data from Figs. 3.8(a) to 3.8(d)

were the results of a single MOI estimate maneuver about the X−axis. The RW

momentum data shown in Fig. 3.8(c) resulted in a Fourier approximations of an

amplitude of 0.1544Nms at a phase of 171.27◦. Additionally, the amplitude and

phase shift of Fourier approximation of SimSat angular velocity from Fig. 3.8(d) was

0.0224 rad/sec and -7.31◦ respectively. After dividing the latter amplitude of 0.0224

rad/sec into the former amplitude of 0.1544Nms the MOI estimate is calculated as

6.90 kgm2. Using that value as the baseline, the residual angular momentum can be

calculated as

r = hrw + Iω (3.36)

where r is the residual, I is the calculated MOI estimate of 6.90 kgm2, hrw is the

angular momentum of the RW from Fig. 3.8(c), and ω is SimSat angular velocity
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from Fig. 3.8(d). The results are shown in Fig. 3.9(a).
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Figure 3.9. Residual Angular Momentum from MOI Approximation

The dominant oscillation in the residual is shown clearly in Fig. 3.9(a). However,

it was predicted that there could be an error associated with the time delay between

multiple data collection sources, and the proposed method of MOI estimation was

intended to be able to correct for any time delay. With this in consideration, the

phase angles of SimSat and the RW were compared. Although the data still has a

178.59◦ difference, Newtonian dynamics tells us that this should be 180◦. Addition-

ally, by knowing the frequency of the oscillation, a time delay associated with this

angular difference can be calculated as a 0.0471 second lag in the RW data. Since

the RW data is the smoother of the two samples, the RW data was advanced by

0.0471 seconds, linearly interpolated, and re-discretized at the original time steps

to allow for comparison to the IMU data. The residuals were re-calculated and are

shown in Fig. 3.9(b). From Fig. 3.9(b) it is concluded that the remaining residual

was predominantly a result of noise in the sensor data and when compared to the

RW angular momentum of approximately ±0.15Nms represents approximately 3%

of the measured value. As a result of both of these aspects, and the MOI estimation

maneuver and calculation were deemed successful.

We estimate the 0.0471 second lag in the RW data to be a combination of two
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time delays. Although the on-board controller operates at 1000 Hz, it is important

to note that the RW data is only collected at 10 Hz and the RW data is then stored

for the on-board feedback-linearized controller. To minimize errors, the least-squares

estimate will favor a time delay of half of the 10 Hz time step. Therefore, we expect

the least-squares estimate to calculate a 0.05 second lag in the RW data. Additionally,

the data from the IMU undergoes a ten time-step rolling average. As a result, the

current IMU data is actually a better representative of the IMU data from five time

steps previous to the current time step or a 0.005 second lag. The difference in these

two time-delays is 0.045 seconds, very close to the measured 0.0471 seconds.

The linear trend removal, Fourier approximation, and MOI estimation process was

accomplished for each of the five maneuvers. The histogram data for the five runs can

be seen in Fig. 3.10(a). To better compare these results with the results of previous

estimation methods, the values have been normalized and shown in Fig. 3.10(b).
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Figure 3.10. Histogram of Test Axis MOI Approximations

The results from the single axis MOI estimation process show all five measure-

ments are within 0.21% of the mean estimate value. This suggests significant im-

provement over the results from previous efforts to approximate SimSat MOI with
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average sample deviations of approximately 2.5% [6].

3.5 First-Order Disturbance Torques

In Sec. 3.4 the zero-order disturbance torques as a result of imbalance in the

Y−axis were identified and removed from the RW data. The imbalance in the Z−axis

results in a first-order torque with respect to θ. This higher order torque means that

for small deviations from the origin, the imbalance in the Z−axis should generate

a considerably smaller torque than an equivalent imbalance in the X− or Y−axes.

The higher order nature of the first-order disturbance torque makes it significantly

harder to estimate the imbalance in the Z−axis meaning there is a good chance that

the imbalance in the Z−axis can be larger than the imbalance in the X− or Y−axes.

As a result, the previously implemented assumption that the first-order disturbance

torques are trivial will not be made. Instead, a realistic value for the imbalance in

the Z−axis will be used in order to determine if a realistic imbalance in the Z−axis

will result in negligible effects to the MOI estimation.

(a) Satellite Simulator Imbalance Z-Axis (b) Torque Due to Imbalance in Z-Axis

Figure 3.11. Imbalance in Z-Axis and Subsequent Torque

Figure 3.11(a) shows an imbalance due to a weight that moves the center of mass

above theX−Y plane. It is apparent in Fig. 3.11(a) that the imbalance in the Z−axis
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will not result in a torque, as long as the body frame Z−axis remains aligned with

gravity vector, defined as the inertial Z−axis. However, when the satellite simulator

begins to rotate as depicted in Fig. 3.11(b) there is a torque equal to

τxz = mzgLz sin(θ). (3.37)

In addition we define he as the error in the angular momentum as a result of a

disturbance torque, and ḣe as the instantaneous disturbance torque. If the torque

due to an imbalance is undesirable, we can consider it a disturbance and if we assume

it is the only disturbance torque we can define the disturbance torque as

ḣe = τxz. (3.38)

The angular rate ω of the desired maneuver is defined in Eq. (3.29) as a function of

time. By integrating Eq. (3.29) with respect to time we can calculate the angle θ as

θ(t) =
−0.12

π
cos

(
2πt

12

)
+ C. (3.39)

where C is the constant of integration. For this maneuver, C was set to zero, so

the oscillation will be centered about 0◦ in the X-axis and the maneuver actually

begins with the spacecraft in a −2.18◦ orientation. Substituting the Eq. (3.39) into

Eq. (3.37) produces

ḣe = mzgLz sin

(
−.12

π
cos

(
2πt

12

))
. (3.40)

Since the magnitude of θ is never more than 2.19◦, the following small angle approx-

imation can be made
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sin

(
−.12

π
cos

(
2πt

12

))
≈
−.12

π
cos

(
2πt

12

)
. (3.41)

The approximation from Eq. (3.41) reduces Eq. (3.40) to

ḣe ≈
−.12mzgLz

π
cos

(
2πt

12

)
. (3.42)

Integrating Eq. (3.42) results in

he ≈
−.72mzgLz

π2
sin

(
2πt

12

)
+ C2 (3.43)

where C2 is a constant of integration, but is accounted for in the Fourier approxima-

tion process and will not introduce an error into the amplitude estimation. Therefore,

this constant of integration will be set to zero. Since Eq. (3.40) still can’t be com-

pletely defined, we will normalize the equation by selecting a normalization scheme

of 120 g and 1 cm for mz and Lz, respectively. The value 120 g was chosen because of

the balance system on SimSat which uses sliding weights of slightly over 100 g. After

substitutions, Eq. (3.40) becomes

he ≈ −8.58× 10−4 sin

(
2πt

12

)
. (3.44)

Written in vector form, the reaction wheel angular momentum �hrw can be consid-

ered the sum of the unperturbed angular momentum value �hrw0
which is required to

produce the maneuver and the angular momentum as a result of the integration of a

disturbance torque �hrwe
.

�hrw = �hrw0
+ �hrwe

. (3.45)

As previously stated in Sec. 3.3.3, the MOI is calculated from the amplitude of the
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Fourier approximation of the RW angular momentum �hrw from Eq. (3.22). Since �hrw0

is expected to be a sinusoid at the same frequency as �hrwe
, when a Fourier approxi-

mation of �hrw is calculated, the amplitude of the sinusoid Ahrw
will be approximately

equal to the unperturbed amplitude of the RW assembly Ahrw0
plus the amplitude of

the disturbance angular momentum Arwe
. When the amplitude of the RW angular

momentum Ahrw
is divided by the amplitude of the Fourier approximation of the

spacecraft’s angular velocity Awsc
an estimate of the spacecraft’s MOI is calculated

MOIest ≈
Ahrw0

Awsc

+
Arwe

Awsc

. (3.46)

Adding an Arwe
of 8.58× 10−4 Nms to the example given in Sec. 3.4.2 of 0.1544 Nms

RW angular momentum and a SimSat rotation rate amplitude of .0224 rad/sec results

in a .0380Kgm2 MOI error being added to a estimated 6.90Kgm2. This means that

a weight as small as 120 g being as little as 1 cm out of place in the Z-axis can result

in a 0.5% error in MOI approximation. Figure 3.10 shows the data collection and

MOI estimation method produces estimates with a standard deviation of five runs of

approximately 0.0073 kgm2. Since it appears safe to assume that the torque associated

with an imbalanced satellite simulator will be relatively consistent between runs, the

disturbance torque associated with a 120 gcm imbalance in the Z−axis would result

in a bias that is five times larger than the sample deviation of the estimation method.

This offset would be undetectable to researchers using only a standard deviation as

a metric of validity. It is concluded that in order to ensure the accuracy of the MOI

estimates the disturbance torques themselves need to be estimated before sub 1% error

can be obtained with the desired estimation process. Unlike the zero-order torque, the

angular momentum as a result of the first-order torque cannot easily be identified and

removed from the data. However, if the first-order torques are well characterized, an

estimated angular momentum error can be calculated and subtracted from the RW
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angular momentum data, much like the linear trend was subtracted in Eq. (3.35).

As a result, the first-order torques about the test axes will need to be analyzed and

an imbalance in the Z−axis needs to be estimated. In order to do this, a torque

characterization maneuver was implemented.

3.6 Torque Characterization Maneuver

In Sec. 3.5 the sensitivity to first-order disturbance torques of the proposed ma-

neuver was analyzed. It was concluded that the first-order torque associated with rel-

atively small imbalances in the Z−axis could introduce an undesired bias. Therefore,

the disturbance torques themselves need to be accurately analyzed before expecting

to accurately estimate the MOI. To estimate the first-order torques being imparted

on the satellite simulator, a maneuver was performed to estimate the disturbance

torques as a function of the position θ. The maneuver chosen was a 40 second rota-

tion about the X−axis from approximately -20 degrees to 20 degrees at the constant

rotation rate ω of 1◦/sec (0.017rad/sec). The quaternions for the maneuver are shown

in Fig. 4.4(a) and the angular rates of the maneuver are shown in Fig. 4.4(b).
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Figure 3.12. Torque Characterization Maneuver

Since the angular velocity of the spacecraft is constant the angular momentum of
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the spacecraft would also be constant in the absence of disturbance torques. If we

assume that there are disturbance torques only as a result of an imbalance in the Y−

and Z−axes, then the disturbance torque about the X−axis would be a function of

the angle of rotation θ about the X−axis and can be expressed as

ḣ = A sin(θ) +B cos(θ). (3.47)

A nonzero value for A would be indicative of an imbalance in the Z−axis, likewise a

nonzero and B would be indicative on the imbalance in the Y−axis. If it is assumed

that θ̇ is relatively constant, and the maneuver is specifically defined to accomplish

this, then Eq. (3.47) can be integrated with respect to time as

h =
−A

θ̇
cos(θ) +

B

θ̇
sin(θ) + h0. (3.48)

Since the reaction wheels are being used to maintain the constant velocity maneuver,

the torque that is being applied to the spacecraft will be transferred and stored in the

RW assembly as a change in angular momentum. Due to assumption that there may

exist higher-order disturbance torques, a symbol representing the H.O.T. is added for

the sake of completeness. Taking both of these into consideration, the equation can

now be written.

hrw =
−A

θ̇
cos(θ) +

B

θ̇
sin(θ) + h20 +H.O.T. (3.49)

Where h20 is the constant of integration. By collecting the values of hrw, sin(θ), and

cos(θ) as follows
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[
h̄rw

]
≈ A

⎡
⎢⎢⎢⎢⎣

A

B

h20

⎤
⎥⎥⎥⎥⎦ (3.50)

where the matrix a A is defined as

A =

[
− cos(θ̄)

θ̇

sin(θ̄)

θ̇
1̄

]
(3.51)

where h̄rw, θ̄, 1̄ are one dimensional arrays the length of the collected data set for the

given experiment. A least-squares estimate of A, B, and h20 can be calculated as

⎡
⎢⎢⎢⎢⎣

A

B

h20

⎤
⎥⎥⎥⎥⎦ = A+

[
h̄rw

]
(3.52)

where A+ is the Moore-Penrose pseudo-inverse of A.

The major assumption that is made during this process is that the disturbance

torques can be characterized as zero- and first-order effects with respect to the angle

θ. In order to validate this assumption, the values of A and B from Eq. (3.52) are

substituted back into Eq. (3.49) along with sin(θ) and cos(θ) to calculate hest. The

angular momentum estimate hest is defined as

hest =
−A

θ̇
cos(θ) +

B

θ̇
sin(θ) + h20 (3.53)

where θ̇ is assumed constant and is calculated from the average of the IMU data after

discarding the transient data associated with initialization.

The calculated values of hest are then plotted against the measured values of hrw

and a sixth-order polynomial approximation of hrw. The three data sets are shown in

Fig. 4.15(a). The order of six was chosen to be arbitrarily large to ensure that all of
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the higher order disturbance torques could be accounted for. Due to the differential

relationship, a sixth-order approximation for the angular momentum is equivalent to

a fifth-order disturbance torque approximation. Although Fig. 4.15(a) shows slight

disagreements at displacements over 10◦, Fig. 4.10 zooms to ±5sec about neutral an-

gular position and shows little difference between the first- and fifth-order estimates

for small displacements in θ. The time interval shown in Fig. 4.10 corresponds to an-

gular displacements of ±5◦, as a result, a first-order approximation of the disturbance

torques is deemed sufficient for the proposed ±2.18◦ MOI estimation maneuver.
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Figure 3.13. Torque Characterization Maneuver

If we apply a rigid body assumption, we can assume that the first-order distur-

bance torque as a function of θ is due to an imbalance in the Z−axis. Subsequently,

the imbalance in the Z−axis can be calculated as

A = mzgLz (3.54)

and the imbalance in the Y−axis can be calculated as

B = −mygLy. (3.55)
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As done previously, 120 g was substituted into my and mz and the equations were

then solved for the error in the position of the balancing weights, dy and dz

dz =
A

(.120)(9.81)
(3.56)

and

dy =
−B

(.120)(9.81)
(3.57)

It should be noted that up to this point dx has been intentionally left out because the

spacecraft is not rotating about the Y body axis. As a result, the torque applied to the

spacecraft about the Y -axis should be constant. Therefore, the angular momentum

built up in the inertial Y -axis should be relatively linear and the slope of which is the

disturbance torque associated with the imbalance in the X direction can be expressed

as

hI
rwy
≈ C1xt+ C2x (3.58)

where hI
rwy

is the angular momentum of the RW in the inertial Y direction and is

calculated as

hI
rwy

= hrwy
cos(θ) + hrwz

sin(θ). (3.59)

Once a linear approximation of the inertial angular momentum in the Y -axis is cal-

culated, the imbalance in the X-axis can be solved with the following equation

C1x = mxgLx (3.60)

and similarly to dy and dz, dx is then defined as
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dx =
C1x

(.120)(9.81)
. (3.61)

Once the imbalance was estimated, the torque characterization maneuver about

the X-axis was repeated four more times, for a total of five estimates. The results

from the five runs were consistent with none of the five measurements in the X−,

Y−, or Z−axes being more than 1− cm away from the average of the respective data

samples. The process was then repeated about ten test axes X̃ in the X − Y plane

at ten degree increments of Φ as shown in Fig. 3.14.

Figure 3.14. Redefined Maneuver Axis X̃(φ)

For each X̃-axis the mean of the five runs was calculated and the five residuals were

calculated. Figures 3.15(a), 3.15(c), and 3.15(e) show the mean imbalance estimation

for each axis, error bars representing the standard deviations about each test axis,

and a ±1(cm) dashed line for a reference to how precise the estimations are. The

histograms in Figs. 3.15(b), 3.15(d), and 3.15(f) show the fifty residuals that resulted

from the five runs about each of the ten axes.

Figures 3.15(a), 3.15(c), and 3.15(e) show the estimated imbalance varies as the

test axis varies from the X to Y body axis. Due to the high degree of precision about

each axis, it is assumed that the imbalance is not changing as a function of time. The
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Figure 3.15. Imbalance Estimates and Histograms

moving of the imbalance estimate instead suggests an inappropriate application of the

rigid body assumption, as first-order structural flexing in the Y−axis which would

vary as a function of the rotation axis, appears to be effecting the estimate. Even

though the disturbance torque varies as a function of the rotation axis, for any given
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axis this disturbance torque is relatively consistent with Fig. 3.15(f) showing that

a vast majority of the fifty measurements were within ±1 cm of the mean estimate

for the respective test axes. The combination of these two assessments result in

the conclusion that although the dominant first-order disturbance torque is not an

imbalance in the Z−axis, it can be relatively well approximated as an “imbalance” in

the Z−axis, provided that “imbalance” estimate used is calculated from a disturbance

torque characterization maneuver about the desired test axis. As a result, prior to the

five MOI data collection maneuvers about each axis, five “imbalance” characterization

maneuvers will be performed in order to approximate first-order disturbance torques

about the test axis.

Once the five torque characterization maneuvers are performed, five MOI data

collection maneuvers will be performed. Afterwards, the “imbalance” will be cal-

culated from the five torque characterization maneuvers. This imbalance will then

be applied to the MOI maneuvers where the “imbalance” will be transformed into a

torque in the inertial frame, integrated with respect to time, rotated into the body

frame and subtracted from the RW measurements. The resulting RW measurements

can then be used to estimate the MOI without inducing the 0.5%kgm2 error for every

120 gcm of imbalance. Instead, the first-order disturbance torque will only introduce

a bias proportional to the precision of the first-order imbalance estimate which from

the data shown in Fig. 3.15(f) is approximately a normal distribution with a single

sigma uncertainty of ±40 gcm. From our calculations in Sec. 3.5 the error associated

with the one sigma uncertainty in the precision of the first-order disturbance torque

will integrate to produce one sigma bias of approximately ±0.013Kgm2, or an error

of approximately ±0.17% in the MOI estimation of the X−axis. The data from these

sixty maneuvers allows us to not only correct for the disturbance torque but estimate

the accuracy of our MOI estimate based on the precision of the first-order torque
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characterization. The next section will cover the experimental results first without

and then with the first-order disturbance torque removal in order to analyze necessity

to include the first-order analysis in future MOI estimates.

3.7 Experimental Results

In order to validate the benefit of the removal of the first-order torques, the esti-

mation process was implemented twice, first without the first-order torque correction

and then again with the first-order torque correction. As mentioned in Sec. 3.3.1

the process comprised of twelve MOI estimates about twelve axes in a hemispherical

quadrant. The results from the MOI approximation maneuver are shown in Table 3.1.

The first two columns in Table 3.1 are the latitude and longitude of the test

axis which were given as reference to better understand the axes locations on the

hemispherical quadrant. As presented, the X−axis would be at 0◦ Latitude and 0◦

Longitude and the Y−axis is at 0◦ Latitude and 90◦ Longitude. The experimentally

estimated MOI are listed in third column. The fourth column shows the calculated

MOI as a result of all twelve estimations and twelve standard deviations that are

shown in the sixth column. The deviation between the experimentally estimated and

the calculated MOI are listed in the fifth column.

The data shown in Table 3.1 result in the following MOI matrix

I =

⎡
⎢⎢⎢⎢⎣

6.886 −0.162 −0.124

−0.162 9.876 −0.126

−0.124 −0.126 12.856

⎤
⎥⎥⎥⎥⎦ . (3.62)

As previously suggested, this method has the ability to over-determine the ellip-

soid, and use the relative measurements of each of the vectors to help validate the

accuracy of the individual measurements. As shown by the measurement along the
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Table 3.1. Single Axis MOI Estimates without First-Order Torque Correction

Latitude Longitude Measured MOI Best Fit Ellipsoid MOI Deviation Std Dev
0 0 6.90 6.89 -0.01 0.01
0 90 9.89 9.88 -0.02 0.01
90 0 12.85 12.86 0.01 0.01
0 30 7.77 7.78 0.01 0.01
0 60 9.28 9.28 -0.00 0.01
30 0 8.48 8.49 0.00 0.01
30 30 9.19 9.19 0.00 0.01
30 60 10.32 10.31 -0.01 0.01
30 90 10.71 10.72 0.01 0.01
60 0 11.46 11.47 0.01 0.01
60 45 11.95 11.93 -0.03 0.01
60 90 12.22 12.21 -0.01 0.02

vector relatively 60 Latitude and 45 Longitude, the number of standard deviations

from the measured approximation and the least squares approximation is 2.33. The

probability of an individual estimate having such a large number of deviations is ap-

proximately 2%, which requires a sample size of 34 estimates for a 50% probability

of a single estimate having such a large error. Although this is not conclusive, it does

further suggest that the previous method of linking the precision with accuracy may

be optimistic.

As previously suggested in the Section 3.4 the first-order disturbance torques

associated could introduce a bias to the MOI estimates. In order to counteract these

effects, a method was introduced in Section 4.4 to estimate and correct for the first-

order disturbance torques. The resulting first-order torque corrected MOI estimations

are shown in Table 3.2.

From this table, it is clear to see that the number of standard deviations from the

measured MOI and the calculated MOI are significantly reduced. With this method,

the largest number of standard deviations from the measured value is approximately

1.49. With a dataset of 12, there is approximately a 50% probability of having at

least one measurement that is 1.99 standard deviations away. This suggests that

69



Table 3.2. Single Axis MOI Estimates with First-Order Torque Correction

Latitude Longitude Measured MOI Best Fit Ellipsoid MOI Dev Std Dev
0 0 6.459 6.455 -0.004 0.008
0 90 9.712 9.715 0.003 0.013
90 0 12.849 12.848 -0.001 0.011
0 30 7.436 7.450 0.014 0.009
0 60 9.093 9.080 -0.012 0.009
30 0 8.210 8.204 -0.006 0.008
30 30 8.977 8.985 0.008 0.010
30 60 10.199 10.192 -0.007 0.012
30 90 10.601 10.608 0.006 0.007
60 0 11.386 11.401 0.014 0.010
60 45 11.906 11.893 -0.012 0.011
60 90 12.184 12.174 -0.010 0.017

this methodology performs better than expected when linking the precision of the

estimates with an approximation of accuracy.

The data from Table 3.2 corresponds to an MOI matrix of

I =

⎡
⎢⎢⎢⎢⎣

6.454 −0.197 −0.175

−0.197 9.716 −0.142

−0.175 −0.142 12.848

⎤
⎥⎥⎥⎥⎦ (3.63)

3.8 Conclusion

In this chapter, a method for dynamic estimation of the MOI matrix was proposed

and evaluated. This procedure started with the identification of some presumed error

sources, specifically first-order torques and errors associated with time delays. The

previous assumptions–trivial first-order disturbance torques, well defined time delays,

and the ability to perform a pure rotation about a single axis were analyzed and shown

to be invalid for SimSat. It was concluded that a deviation from more traditional

methods should be made so a modified version of MOI method for POI estimation

created by Wiener [39] was implemented and evaluated. Previous researchers used a
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step maneuver for MOI estimation which was analyzed and deemed inefficient, noisy,

and possibly unable to account for time delays. A new maneuver was proposed,

implemented, and analyzed in this research that kept a larger percentage of data,

could be curve fit for better noise rejection, and was experimentally shown to not

be subject to time delays. In addition, the first-order disturbance torques were ana-

lyzed and deemed non-trivial. A method was proposed and implemented to estimate

and remove angular momentum associated with the zero-and first-order disturbance

torques. The experimental result was the identification and correction of an otherwise

indiscernible 6.5% erroneous bias about the X−axis to a single axis MOI estimation

accuracy to within approximately ±0.013Kgm2 or ±0.17% of the MOI estimate about

the X−axis. The three components of the new MOI estimation process–methodology,

maneuver, and correction of disturbance torques–were combined and experimentally

evaluated on SimSat. The result was an MOI matrix that was calculated from an

overdetermined set of MOI estimates resulting in an average percent deviation of

approximately 0.09% and a 96% improvement over the previous methodology [6].
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IV. Experimental Identification and Correction of

Disturbance Torques for Satellite Attitude Simulators

Because ground-based satellite attitude simulators all have gravity torques that

can’t be completely removed for multi-axis maneuvers, experimental results may be

unknowingly corrupted. The objective of this research is to create and analyze a

disturbance torque profile for a terrestrial-based satellite attitude simulator so that

gravitational disturbance torques can be quantified and reduced. It is common, when

conducting research using satellite simulators, to assume the simulators are rigid

bodies and the dominant zero and first-order torques are due to an imbalance. The

gravitational disturbance torques that result from platform imbalance are typically

reduced by rigorously balancing the satellite simulator in a nominal attitude prior to

experimentation. The assumption is that rigorous balancing will effectively eliminate

the zero and first-order disturbance torques is analyzed and experimentally shown

to be invalid for most satellite simulators. This chapter presents a maneuver which

exposes the lack of validity of the rigid body assumption, a derivation to identify

a first-order disturbance torque due to structural flexing, and experimental results

demonstrating the importance of platform rigidity. Ultimately, active correction is

added to reduce gravitational disturbance torques by counteracting the imbalance

due to structural deflections through the movement of masses with an array of linear

actuators.

4.1 Introduction

Satellite simulators are commonly used to test and analyze feedback control sys-

tems and controllers in place of testing on operational satellites. However, the grav-

itational disturbance torques that satellite attitude simulators encounter add un-
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certainty to the analysis which could lead to inconclusive or erroneous results [40].

The objective of this research is to create and analyze a disturbance torque profile for

terrestrial-based satellite attitude simulators so that gravitational disturbance torques

can be quantified and potentially reduced. We start the discussions by presenting a

series of maneuvers to identify the extent of the disturbance torques. The equations

for the disturbance torque due to structural deflection are derived, identifying a dis-

turbance torque not previously identified [34]. A set of structural reinforcements or

stiffeners were added to AFIT second generation satellite attitude simulator SimSat

in an effort to verify that the disturbance torques are in fact due to structural de-

flections and the torques are re-analyzed. Finally, an array of linear actuators were

added to move masses and actively counteract the disturbance torques. After ac-

tuator calibration the active balancing system performance is analyzed. Before we

discuss these experiments, we will first discuss some previous research using satellite

attitude simulators.

4.2 Background

Air bearing satellite simulators have been used for decades to simulate the space

environment for validation and verification of potential satellite control algorithms

[32]. One problem that continues to plague air-bearing satellite simulators are gravi-

tational torques, with the dominant component being due to an imbalance. Imbalance

is defined here as the “static” imbalance, the distance between the center of mass and

the center of rotation while the spacecraft is in a neutral position [3].

The current AFIT SimSat is shown in Fig. 4.1(a) and is the result of many years of

iterative design and test, but the one item it still lacked was an active balancing system

to correct for the gravitational disturbance torques [25]. Previous AFIT researchers

have addressed the problem by rigorous balancing prior to experimentation. They also
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(a) Air Force Institute of Technology (AFIT)
Satellite Simulator SimSat

(b) Defined Body Frame and Negative Grav-
ity Vector

Figure 4.1. Satellite Attitude Simulator and Defined Body-Frame Coordinate System

focused on the precision of the data collection and not the accuracy, the idea being

that the gravitational disturbance torques will affect all of the results equally and with

highly precise estimates desirable data can be collected by comparing two separate

MOI estimates. Two notable instances were the works completed by Dabrowski [6]

and Geitgey [11] who were using precision MOI estimates to detect parasitic satellite

and remaining onboard propellant, respectively. Recently, research focuses have gone

away from strictly requiring precision to requiring both precision and accuracy as

discussed in Chapter III. One such example would be the analysis of non-linear

controllers required for attitude control with a CMG array [41]. Unlike the linear

torque generated by a RW array, the available torque from a CMG is dependent on

the current orientation of each CMG in the array and any disturbance torque will

likely cause a change in CMG orientation which would remove the ability to analyze

certain controller characteristics such as performance at or around singularity.

Many researchers have addressed actuation systems to correct the imbalance of an

air-bearing satellite simulator [17; 3; 23]. Although they differ slightly, the systems

essentially use recursive estimators that use rigid body equations of motion to identify

an imbalance, and then command linear actuators to correct the imbalance. We will
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refer to this type of research as the dynamic correction of a static imbalance. The

reason we refer to it as a “static imbalance” is due to the fact that if the rigid

body assumption were true this imbalance shouldn’t change as a function of time

or orientation and should remain constant, or essentially static. This research effort

differs from the previous researchers’ efforts because we the validity of the rigid body

assumption. As a result, we will be attempting to identify and actively correct for

a dynamic imbalance–the imbalance as a result of structural deflections which varies

depending on orientation. Before describing our approach, we will first define the

torques as they will be referenced for this chapter.

4.3 Disturbance Torque Classification

For the purpose of this chapter, disturbance torques will be identified by the

“order” of the torque. We define a satellite attitude simulator to be at a neutral

position when the body frame Z−axis is aligned opposite of the gravity vector. Any

deviation from this neutral position can be considered δθ. Figure 4.1(b) shows a

satellite simulator at δθ of 0. The gravitational disturbance torque can be expressed

as a function of δθ by implementing a Taylor series expansion as the deviation from

neutral position. An example Taylor series expansion is shown as

τ = τ0 + τ1δθ +
τ2 ∗ δθ

2

2!
+ H.O.T. (4.1)

Since the neutral position is defined as zero we can substitute the equality

θ = δθ (4.2)

and express the disturbance torque as a function of θ
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τ = τ0 + τ1θ +
τ2 ∗ θ

2

2!
+ H.O.T. (4.3)

It is important to note, that θ can be induced by a rotation about the body frame

X− or Y−axis or any combination thereof. For now, we will keep this generic by

defining θ as any rotation that makes the Z−body axis and the gravity vector non-

collinear. A zero-order disturbance torque is defined as the first term in the Taylor

series expansion which is independent of θ. An example of a zero-order disturbance

torque about the X−axis is an imbalance in the Y−axis. Figures 4.2(a) and 4.2(b)

show the force and corresponding lever arms that produce the torque due to an

imbalance in the Y−axis. Note that instead of considering an imbalance as a physical

distance between the center of mass and the center of rotation, we are considering an

imbalance as a mass being added to a perfectly balanced satellite simulator.

(a) Satellite Simulator Imbalance
Y−Axis

(b) Torque Due to Imbalance in
Y−Axis

Figure 4.2. Imbalance in Y−Axis and Subsequent Torque as a function of θ

The torque corresponding to the product of the force and the lever arm is

τxy = −Lymyg cos θx (4.4)

where τxy is a torque about the X−axis as a result of an imbalance in the Y−axis.

The other components Ly, my, g, and θx are the distance along the Y−axis from the
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mass to the center of rotation, the mass of the weight, the acceleration due to gravity,

and the rotation about the X−axis, respectively. If we define θx as a deviation from

the neutral position by

θx = 0 + δθx, (4.5)

a Taylor series expansion of τxy from Eq. (4.5) can be written as

τxy = −Lymyg +
Lymygθ

2
x

2!
− H.O.T. (4.6)

It is apparent from Eq. (4.6) that the first term of τxy would be considered a

zero-order torque since the dominant component Lymyg is independent of δθx.

Subsequently, a first-order disturbance torque is a torque that if estimated by a

Taylor series expansion would primarily behave linearly with respect to the deflec-

tion angle between the Z−axis and the gravity vector. An example of a first-order

disturbance torque is an imbalance in the Z−axis. Figures 4.3(a) and 4.3(b) show an

imbalance in the Z−axis and the corresponding forces and lever arms.

(a) Satellite Simulator Imbalance in
Z−Axis

(b) Torque Due to Imbalance in
Z−Axis

Figure 4.3. Imbalance in Z−Axis and Subsequent Torque

Equation (4.7) shows the resulting torque about the X−axis as a result of the

imbalance in the Z−axis and as a function of the angle about the X−axis θx
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τxz = mzgLz sin θx (4.7)

where τxz is the torque in the X−axis as a result of an imbalance in the Z−axis.

Similar to Eq. (4.6), mz, g, and Lz are defined as the mass of the added weight, the

acceleration due to gravity, the distance from the center of rotation to the added

weight, respectively. A Taylor series expansion of Eq. (4.7) would then be

τxz = mzgLzθx −
mzgLz

3!
θ3x +H.O.T. (4.8)

As a result, the imbalance in the Z−axis will result in a first-order torque in the

X−axis when rotating about the X−axis. Now that the disturbance torques can be

described as a Taylor series approximation, we can analyze the disturbance torques

about a specific axis by their order. The torque analysis begins with a torque char-

acterization maneuver that will be discussed in the next section.

4.4 Torque Characterization

In order to estimate the disturbance torques about a given axis, we need to first

explain how SimSat is controlled. There are three independent three-axis attitude

control systems on SimSat: six fans, three RWs, and a four CMG array. For this first

experiment, we started by using fans to hold the initial static orientation and de-spin

the RW. This ensures that the initial angular momentum of the system was near zero.

During the data collection, we disable the fans and only use the RW array for attitude

control. Since RWs are momentum exchange devices, we know that in the absence of

disturbance torques the angular momentum of the RW is equal and opposite to the

angular momentum of the spacecraft. By monitoring the angular momentum of the

RW and subtracting the angular momentum of the spacecraft, we can estimate the
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angular momentum he built up as a result of the disturbance torques from

hrw(t) = −hsc(t) + he(t) (4.9)

where hrw is the angular momentum in the RW and hsc is the angular momentum of

the test platform. Since the angular momentum of the RW will be estimated using

measurements that have noise, the measured data will be curve-fit using an nth -order

polynomial approximation. The notation will be hP
rw(t

n)

hrw(t) ≈ hP
rw(t

n). (4.10)

Equation (4.9) can now be approximated as

hP
rw(t

n) ≈ −hP
sc(t

n) + hP
e (t

n). (4.11)

From Eq. (4.9), we estimate the disturbance torques by computing the time rate of

change of the angular momentum ḣe. We simplify the calculation for the disturbance

torques by implementing a maneuver consisting of a constant angular rate resulting

in

ḣP
sc(t

n) ≈ 0. (4.12)

Equation (4.11) can now be differentiated with respect to time resulting in

ḣP
e (t

(n−1)) ≈ ḣP
rw(t

(n−1)). (4.13)

In addition to simplifying Eq. (4.13), the constant angular velocity ω of the spacecraft

results in a simple transformation from time to θ
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θ = ωt+ C

θ̇ = ω
(4.14)

where C is a constant of integration and is −20◦ for this experiment. Substituting

the values from Eq. (4.14) into the polynomials represented in Eq. (4.13) results in

ḣP
e (θ

(n−1)) ≈ ḣP
rw(θ

(n−1)). (4.15)

The angular rate chosen for the maneuver was 0.0174 radians per second, approx-

imately 1◦ per second. Figure 4.4(a) shows the angles θx, θy, and θz versus time, and

Fig. 4.4(b) shows the nearly constant angular velocity for this maneuver versus time.
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Figure 4.4. Torque Characterization Maneuver

In order to decrease the errors associated with transients, the first and last five

seconds of data are discarded and the remaining ±0.262 rad (or ±15◦) of data is

analyzed. The previous section presents a notation for polynomial approximations

because most of the functions used in the analyses of the torque characterization ma-

neuver are polynomial estimations of varying orders. Specifically, we reference hP (θ6)

which differentiates to τP (θ5) which will be used as “truth” due to the inability to
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differentiate the noisy RW angular momentum measurements. We use hP (θ4) which

differentiates to τP (θ3) as the polynomial estimation of the disturbance torque. The

order of hP (θ6) was chosen to be arbitrarily large to account for all of the distur-

bance torques, but we found that hP (θ8) started to become poorly conditioned and

appeared to be picking up the transients that still exist around the 5 to 8 second

mark. Additionally, hP (θ4) was chosen because it differentiates to τP (θ3) which is a

polynomial order higher than the hypothesized significant torques which are on the

order of τP (θ2). In the next section, we will discuss a second set of torque and angu-

lar momentum estimation curves, the torque and resulting angular momentum that

could be generated by an imbalance.

4.4.1 Single Axis Maneuver and Local Balance.

Now we will discuss the angular momentum that would build up during a maneu-

ver due to an imbalance which we will call hbal. Due to sometimes small and varied

nature of gravitational disturbance torques due to imbalance, it is often difficult to

analyze the disturbance torques experienced by satellite simulators. This is because

contaminated results could be due to improper balance, and a valid counterargument

is that the results could be better if the spacecraft was better balanced. To avoid

these criticisms and allow for better analysis of higher-order disturbance torques, a

least-squares estimate of an imbalance is calculated that minimizes the error between

the angular momentum resulting from the estimated imbalance hbal and the angular

momentum of the RW hrw. The benefit of doing so is that the satellite simulator no

longer needs to be perfectly balanced in order to analyze the higher-order disturbance

torques, we only need to know what the imbalance is and then correct for it. Once

the imbalance is known, we calculate the residual between the torque due to the im-

balance τbal and the τP (θ5), a derivative of the sixth-order polynomial approximation
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hP (θ6) of the RW angular momentum hrw. The resulting residual is the disturbance

torque that would be present even if the satellite simulator was perfectly balanced.

4.4.2 Local Imbalance.

In order to estimate the imbalance, we combine the zero- and first-order distur-

bance torques due to imbalances in the Y− and Z−axes from Eq. (4.4) and (4.7)

as

τbal = −Lymyg cos θx +mzgLz sin θx (4.16)

where τbal is the resulting torque due to an imbalance. For now we will simplify

Eq. (4.16) by defining

A = −Lymyg

B = mzgLz

(4.17)

to produce

τbal = A cos θ +B sin θ. (4.18)

The coefficients A and B are the torque magnitudes that correspond to the imbalances

in the Y− and Z−axes, respectively. Due to the linearity of the torque characteriza-

tion maneuver described in Eq. (4.14) with respect to θ, the angular acceleration θ̈ is

assumed to be approximately zero. Subsequently, Equation (4.18) can be integrated

to approximately

hbal ≈
A

θ̇
sin θ −

B

θ̇
cos θ + h0 (4.19)

where hbal is the angular momentum in the test axis as a result of an imbalance, and

82



h0 is needed since the θ of zero does not correspond to t equal zero. The coefficients

A, B, and h0 can be solved for from the following equation

A

[
A B h0

]T
= hrw (4.20)

where hrw is a (m× 1) matrix consisting of the angular momentum of the RW about

each time-step of 0.01 seconds. The terms A, B, and h0 are coefficients that were

concatenated to form a (3× 1) matrix, and A is a (m× 3) defined as

A =

[
sin θ
θ̇

− cos θ
θ̇

1

]
. (4.21)

The terms sin θ, cos θ, and 1 are all (m × 1) arrays, and as previously explained

in Eq (4.14), θ̇ is treated as a constant. Because the matrices are non-square, a

pseudo-inverse is used to calculate the coefficients

[
A B h0

]T
= (ATA)−1AThrw. (4.22)

Once the magnitudes A and B have been calculated, we can substitute them into

Eq.(4.17) to produce

A = mygLy (4.23)

and

B = mzgLz. (4.24)

Equations (4.23) and (4.24) have four unknowns: my, Ly, mz, and Lz. If we choose

a normalization mass of 120 g, the approximate mass of our balancing system, we

can normalize the solution that represents the current error in the balancing system.
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Similarly, expressing the angular momentum in the inertial Y−axis hI
y as

hI
y = C1t+ C0 (4.25)

the torque associated with imbalance in the body X−axis would be equal to the time

derivative of Eq. (4.25)

C1 = mxgLx (4.26)

where the function resulting from Eq. (4.18) will subsequently be referred to as the

torque resulting from a “simple imbalance.” The residual torque τres calculated as

τres = τP (θn)− τbal(θ) (4.27)

is the torque that cannot be eliminated by balancing efforts or estimated due to zero

and first-order torques.

It is important to note that this balance estimation method is formed on the as-

sumption that the single significant zero and first-order torques are due to imbalance.

As a result, the balance estimation about a single axis may be unique to said axis and

therefore a single axis imbalance estimate is referred to as the “local imbalance.” This

is a balance that theoretically could be obtained if we specifically tuned the spacecraft

for a maneuver about a single specific axis. Conversely, the “global balance” is an ad-

justment of the center of mass that was chosen to reduce disturbance torques about

all axes and as a result will not be as effective in eliminating disturbance torques

about any given axis and will be discussed in the upcoming Subsection 4.4.4.
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4.4.3 Polynomial Approximation and Angular Momentum Correction.

Due to the presence of noise, the disturbance torque is estimated as the derivative

of a polynomial approximation of the angular momentum data. The polynomial ap-

proximations can then be differentiated to produce the disturbance torque estimation.

A third-order torque estimation can be expressed as

τsc ≈ τP (θ3) = A3 +B3θ + C3θ
2 +D3θ

3. (4.28)

Since one of the objectives is to identify the disturbance torques that cannot be

corrected by balancing, we will need to correct τP (θ3) for the disturbance torque

caused by an imbalance by representing τP (θ3) as the sum of the disturbance torques

due to imbalance and the disturbance torques that are not caused by an imbalance

from

τP (θ3) = A3+B3θ+C3θ
2+D3θ

3 = Abal cos θ+Bbal sin θ+Ã+B̃θ+C̃θ2+D̃θ3. (4.29)

Then a Taylor series expansions of the disturbance torques due to an imbalance can

be formed to produce

τP (θ3) = A3+B3θ+C3θ
2+D3θ

3 ≈ Abal+Ã+Bbalθ+B̃θ+C̃θ2−
Abal

2!
θ2+D̃θ3−

Bbal

2!
θ3.

(4.30)

Once in this form, the coefficients of the various powers of θ can be isolated and set

equal resulting in
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Ã = A3 − Abal

B̃ = B3 −Bbal

C̃ = C3 +
Abal

2!

D̃ = D3 +
Bbal

2!

(4.31)

and a new simple imbalance corrected torque estimate τ̃(θ3)

τ̃P (θ3) = Ã+ B̃θ + C̃θ2 + D̃θ3. (4.32)

Once corrected, the coefficients for the estimated disturbance torque can be indi-

vidually analyzed and evaluated at various deflection angles allowing for a better un-

derstanding of the tradeoff between larger maneuvers with more disturbance torques

and smaller maneuvers with less disturbance torques.

4.4.4 Balance Continuum and Global Balancing.

In the previous section, we estimate the imbalance of the spacecraft by imple-

menting a torque characterization maneuver about the X−axis. Since the choice of

test axis is arbitrary, this process can be repeated about any axis in the X−Y plane.

With this in mind, the process was repeated about ten more axes X̃ in the X − Y

plane at ten degree increments of Φ, as shown in Fig. 4.5(b).

For each new test axis X̃, the torque characterization maneuver is repeated five

times resulting in five imbalance estimations. Figures 4.6(a), 4.6(c), and 4.6(e) show

the mean normalized moment arm estimations for each axis along with the maximum

and minimum estimations and a ±1 (cm) dashed line for a reference to the precision

of the estimates. The histograms in Figs. 4.6(b), 4.6(d), 4.6(f) show the fifty resid-

uals calculated by comparing the five imbalance estimates with the mean of the five

imbalance estimates for the ten test axes.
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(a) Representation of Satellite Attitude Sim-
ulator

(b) Definition of Φ

Figure 4.5. Definition of Alternate Test Axes

Although Fig. 4.6(e) shows the imbalance estimate in the Z−axis varies signifi-

cantly between test axes, Fig. 4.6(f) suggests that for a given test axis the imbalance

estimate in the Z−axis is relatively consistent. These two observations combine to

help generate the conclusion that there is an additional first-order disturbance torque

that is a function of Φ and is currently not accounted for with the rigid body as-

sumption that was used to estimate the simple imbalance. In addition, the fact that

the “local imbalance” varies as a function of the test axis gave rise for the identifica-

tion of the “global imbalance” the average of the fifty “local imbalances.” Since one

objective of this research is to reduce the disturbance torques, it is first beneficial to

determine the source of the disturbance torques. In the next section, we will derive

the equations for the torques associated with structural deflections to determine if

they could be responsible for the additional first-order disturbance torque.

4.5 Derivation of Disturbance Torques Due to Structural Deflections

In order to model the disturbance torque associated with structural deflections,

we create a depiction of SimSat as an air bearing with two masses attached by two
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Figure 4.6. Initial Imbalance Estimates

springs as shown in Figure 4.7(a).

If the location of the massesm1 andm2 are such that SimSat is statically balanced,

then any displacement of m1 or m2 in the Y−or Z−axis will result in an imbalance

and the imbalance will produce a gravity torque. The magnitude of the forces from

each mass in the body frame X−axis can be written as
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Fm1zf = −m1g cos θ

Fm2zf = −m2g cos θ

Fm1yf = −m1g sin θ

Fm2yf = −m2g sin θ.

(4.33)

(a) Gravitational Force at Neutral Position (b) Forces as a Function of θ

Figure 4.7. Gravitational Forces on a Flexible SimSat

Due to masses being attached by springs, a change in force will result in a change

in displacement. Recall, using Hooke’s law the displacement of a spring can be written

as

xk =
f

k
. (4.34)

As the force changes, the displacement will change as well

δxk =
δf

k
(4.35)

where δxk is the change in displacement of the spring and δf is the change in force.

Since the springs have a mass attached to them, any change in the displacement of

the spring in the body frame will result in a movement in the center of the attached
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masses

δz1 = −m1g
k1z

cos θ − −m1g
k1z

δz2 = m2g
k2z

cos θ − −m2g
k2z

δy1 = −m1g
k1y

sin θ − 0

δy2 = −m2g
k2y

sin θ − 0

(4.36)

which can be rearranged as

δz1 = m1g
k1z

(1− cos θ)

δz2 = m2g
k2z

(1− cos θ)

δy1 = −m1g
k1y

sin θ

δy2 = −m2g
k2y

sin θ.

(4.37)

The movement of the two masses, both in the body frame Y− and Z−axes will create

an imbalance resulting in a torque about the X−axis as a function of the rotation

angle

τδz = δz1m1g sin θ + δz2m2g sin θ

τδy = −δy1m1g cos θ − δy2m2g cos θ.

(4.38)

Substituting Eqs. (4.37) into Eqs. (4.38) results in

τδz =

(
m2

1g
2

k1z
+

m2
2g

2

k2z

)
(1− cos θ) sin θ

τδy =

(
m2

1g
2

k1y
+

m2
2g

2

k2y

)
sin θ cos θ.

(4.39)

By defining coefficients of structural deflections in the Y− and Z−axes, CV and CH

are defined as follows
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CV =

(
m2

1g
2

k1z
+

m2
2g

2

k2z

)

CH =

(
m2

1g
2

k1y
+

m2
2g

2

k2y

) (4.40)

then the equations reduce to the following

τδz = CV (1− cos θ) sin θ

τδy = CH sin θ cos θ.

(4.41)

It is important to note, that similar to the torque characterization maneuver where the

choice of X̃ could be arbitrarily chosen, the choice of deriving the previous equations

about the X−axis was also arbitrary. Were we to repeat the process about the

Y−axis, or any of the axes in-between, we would expect to have different masses

and different spring constants. As a result, it is safe to assume that CV and CH , as

derived, are functions of the test axis and are therefore a function of Φ. As a result,

we express them as such CV (Φ) and CH(Φ). Substituting CV (Φ) and CH(Φ) into

Eq. (4.39) and Taylor series expanding out to terms of θ3 produces

τδz ≈
CV (Φ)

2!
θ3

τδy ≈ CH(Φ)θ −
CH(Φ)

2!
θ3.

(4.42)

The disturbance torques from Eq. (4.41) due to structural deflections can then be

added to the summation of torques due to imbalance to generate
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ḣ = −Lymyg cos θ + Lzmzg sin θ + CV (Φ)(1− cos θ) sin θ + CH(Φ) sin θ cos θ. (4.43)

After taking a Taylor series expansion about θ set to zero, we get an expression of ḣ

as

ḣ = −Lymyg + (Lzmzg + CH(Φ))δθ +
Lymygδθ

2

2!
+

(CV (Φ)− CH(Φ))δθ
3

2!
+ H.O.T.

(4.44)

In this form, it is clear to see that there are now two first-order terms with respect

to δθ and that assuming CH(Φ) is zero could result in the erroneous conclusion that

the simple imbalance Lzmz changed as a function of the rotation axis Φ. Although

the dominant term in the Taylor series expansion for Lzmz and CH(Φ) is a first-order

torque, continuing the Taylor series expansion to a higher-order would result in a

third-order torque which would result in a fourth-order component in the angular

momentum while introducing another unknown CH(Φ). Even if we assumed that

CH(Φ) was zero, recall Fig. 4.8(c) that showed the residual between the fourth-order

polynomial estimation of hrw and the measured values of hrw. From Fig. 4.8(b) it

would appear as if the residual for the fourth-order polynomial estimation was al-

ready on the order of the sensor noise. The residual in Fig. 4.8(c) would suggest

that any attempt to use fourth-order angular momentum data to differentiate be-

tween two first-order torques would result in estimates that are highly susceptible to

errors associated with sensor noise. Although this methodology was attempted, the

suspicions were confirmed when deviations in estimates of Lzmz increased by over

an order of magnitude. As a result, instead of solving for the amount of structural

flexing, we decided to decrease the amount of structural flexing by adding structural

reinforcements to key components of SimSat.
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4.5.1 Original Torque Characterization Results.

From the fifty torque characterization maneuvers implemented in Sec. 4.4.4 to

identify the change in first-order torque and estimate the “global imbalance”, a single

maneuver about the X−axis was selected for additional analysis. The results from

the additional analysis are shown in Fig. 4.8.
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Figure 4.8. Initial Results from Torque Characterization Maneuver

Figure 4.8(a) shows the angular momentum of the RW in the test axis hrw which

93



is not constant clearly showing the presence of a disturbance torque. A fourth-order

polynomial approximation hP (θ4) which will be differentiated to τP (θ3) and used to

analyze the disturbance torques. Additionally, Fig. 4.8(a) shows the angular momen-

tum curve associated with the local balance hloc
bal as well as the angular momentum

curve that would result from the global imbalance hglobal
bal . It is important to note that

there is a significant disagreement between the angular momentum resulting from the

global imbalance hglobal
bal and the angular momentum of the spacecraft hrw, this fur-

ther suggests that there are significant disturbance torques other than the disturbance

torques due to an imbalance. Figure 4.8(b) shows the residuals between the hrw and

a fourth-order polynomial approximation of hP
rw(θ

4) as well as the angular momen-

tum resulting from a local imbalance simple imbalance hloc
bal and a global imbalance

hglobal
bal . Once again the curve is dominated by the residual error between the angular

momentum of the spacecraft hrw and the angular momentum that would result from

the global imbalance. Figure 4.8(c) shows the residual between “truth” τP (θ5) and

τP (θ3) and the torques resulting from a local imbalance τ locbal and a global imbalance.

Although the previous figures shows the globally balanced results greatly overshad-

owing the disturbance torques due to a local balance, Fig. 4.8(c) shows that a lot of

that is due to the least-squares estimate selecting a local imbalance that integrates

out to almost zero. The instantaneous torque at θ of 15◦ is approximately 20 mNm,

when compared to the available torque from a single reaction wheel of 250 mNm

we conclude that even if we balanced to a specific axis the disturbance torques at

15◦ would account for almost 8% of our available torque. In Figure 4.8(d) we have

taken a slightly different approach and instead of showing the torque over a single

maneuver, we have reduced each maneuver into a single torque about 15◦ deflection.

This single torque is then separated into a sum of the first four components of the

Taylor series expansion evaluated at 15◦, resulting in a single torque value for each
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of the evaluated terms τ(θ0) to τ(θ3). These four torque components were calculated

for all five maneuvers about a given test axis and the average value of each of the

four torque components was calculated. The process was repeated about all ten test

axes and the results of the individual torque components are plotted against the test

axis Φ. Table 4.1 shows the largest respective torque components of all ten test axes

so the “Total” torque value will not necessarily be a summation of the four torque

components.

The data in Table 4.1 shows that the dominant torque is indeed the first-order

disturbance torque. As derived in Sec. 4.5, this could be due to structural flexing. As

a result, structural reinforcements were added to key components and the experiment

was repeated.

4.6 Structural Reinforcements

In 2008, SimSat was reconfigured from a dumbbell to a tabletop configuration

with the desire to increase the rigidity and decrease the structural flexing [30]. In

2011, McChesney designed, built, and installed a four CMG array on the surface

[25]. To counteract the movement of the center of gravity in the body Z−axis,

large steel ballasts were added to the bottom of SimSat as shown in Fig. 4.9. After

the reinforcements were added, the torque characterization experiment described in

Sec. 4.4 was repeated and the results are shown in Fig. 4.10.

Figures 4.10(a) and 4.10(b) shows the angular momentum and residuals of the RW

Table 4.1. Original Disturbance Torques

Order of Torque δθ 15◦ 10◦ 5◦ Std Dev at 15◦

Zeroth 12.08 12.08 12.08 0.76
First 35.79 23.86 11.93 1.61
Second 26.52 11.79 2.95 1.17
Third 23.31 6.91 0.86 2.01
Total 37.29 26.93 19.37 2.43
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Figure 4.9. Braces Added to Increase Rigidity of Ballasts

for a single maneuver about theX−axis along with a fourth-order polynomial approx-

imation hP (θ4), angular momentum that would result from balancing locally, and the

angular momentum that would result from balancing globally. Similar to the results

from prior to the structural reinforcements, the angular momentum that would result

from balancing globally still clearly disagrees with the experimental data confirming

the presence of disturbance torques that cannot be accounted for by balancing the

spacecraft as a whole. Figure 4.10(c) still shows the disturbance torque associated

with the local imbalance associated with balancing globally as the dominant distur-

bance torque, but unlike before the structural reinforcements were added the torque

that could result from balancing specifically for the test axis has been significantly

reduced from approximately 15 mNm shown in Fig. 4.8(c) to approximately 3 mNm

as shown in Fig. 4.10(c).

Figure 4.10(d) shows the corrected coefficients of the third-order torque approxi-

mation and once again even though the coefficients vary widely as a function of the

test axis Φ, they are consistent which suggests that they can be characterized and
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Figure 4.10. Torque Characterization Maneuver after Structural Reinforcements

actively corrected.

Table 4.2 shows the disturbance torques of the varying orders evaluated at three

angles. Once again the first-order disturbance torque at 15◦ but the structural re-

inforcements seem to have greatly reduced the impact of the disturbance torques.

Table 4.3 shows a side-by-side comparison of the disturbance torques before and after

the addition of the structural reinforcements.
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Table 4.2. Disturbance Torques After Structural Reinforcement

Order of Torque δθ 15◦ 10◦ 5◦ Std Dev at 15◦

Zeroth 4.35 4.35 4.35 0.37
First 8.65 5.77 2.88 0.49
Second 7.10 3.15 0.79 0.55
Third 4.08 1.21 0.15 0.80
Total 16.66 11.61 7.46 0.50

Table 4.3. Comparison of Structural Deflections Before and After Structural Rein-

forcement

Order of Pre Reinforcement Torque Post Reinforcement Torque Percent
Torque δθ Evaluated at 15◦ (mNm) Evaluated at 15◦ (mNm) Reduction %
Zeroth 12.08 4.35 64.0%
First 35.79 8.65 75.8%
Second 26.52 7.10 73.2%
Third 23.31 4.08 82.5%
Total 37.29 16.66 55.3%

From Table 4.3 we see that the structural reinforcements have decreased the first

and third-order torques by over 75% and 82% respectively. Interestingly, even though

the structural deflection as derived generated a first- and third-order disturbance

torque, the zeroth- and second-order torques also saw significant reductions. We

suspect that this is due to non-collinear deflections. The disturbance torques as

derived in Section 4.5 were based on the principal structural axes being collinear with

the body frame axes. This assumption meant that a force in the Y−axis would only

produce a collinear deflection in the Y−axis. In actuality, it is possible that the

principal structural axes are not aligned with the body axes, which could result in

non-collinear deflections in the X− and Z−axes. The second-order torque could be

explained by a first-order deflection in the Z−axis as a result of the first-order force

in the Y−axis.

Due to the desire to further reduce the disturbance torques, linear actuators with

tip masses were added to actively counteract the imbalance associated with structural

flexing, which will we discuss next.
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4.7 Addition of Linear Actuators for Disturbance Torque Correction

The first step to further reduce the disturbance torque due to structural deflection,

is to size the linear actuators to be added to SimSat. From Sec. 4.6, there is a

8.65 mNm torque at 15◦. To counteract this torque with a linearly actuated mass, we

would need 176.35 gcm of actuation in the plane perpendicular to the gravity vector.

We chose an array of three Firgelli L12-100-100-12 actuators which will be commanded

with three of the 0-4.5 V analog signal outputs from the dSPACE MicroAutoBox™.

The L12-100-100-12 uses an on-board potentiometer and closed-loop controller to

track the desired position. Due to the on-board noise filter, the linear actuators

will reject small changes in position and will implement the corresponding ramp

as a series of approximately 0.5 cm steps. With a 0-4.5 V signal, the actuators

have a range of motion of ±4.5 cm. Correcting for 176.35 gcm imbalance at 30◦

deflection would require masses of approximately 40 g. We added a margin of 1.5,

and constructed the actuators to have a mass of approximately 60 g. The X− and

Y−axes actuators are shown in Fig. 4.11. Due to the success of the addition of

the structural reinforcements, we decided decrease the deflection by minimizing the

ballast weight. The ballast mass was reduced by approximately 30% which from

Eq. 4.39 should result in approximately 50% decrease in structural deflection. As a

result, we decided that the disturbance torque profile would be re-characterized while

the actuators were disabled to ensure that any benefits from enabling the actuators are

correctly attributed to the actuation and not the configuration change. The results

from the torque characterization experiment are shown in Fig. 4.12.

Figures 4.12(a) and 4.12(b) show a significant reduction in the error due to bal-

ancing globally as opposed to balancing specifically for the test axis or “locally”.

Additionally, Fig. 4.12(c) shows all three torques to be within 2 mNm of the esti-

mated torque that the spacecraft experiences; results that are almost too good to be
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Figure 4.11. Actuators Added to Actively Compensate for Structural Flexture

true; however, Fig. 4.12(d) confirms the results but shows that the torque error about

the X−axis is somewhat of an anomaly and suggests that if the process was repeated

about the Y−axis we would expect considerably more torque error.

Table 4.4. Torque Analysis with Actuators Installed but Disabled

Order of Torque δθ 15◦ 10◦ 5◦ Std Dev at 15◦

Zeroth 0.65 0.65 0.65 0.22
First 3.43 2.29 1.14 0.63
Second 2.03 0.90 0.23 0.40
Third 3.74 1.11 0.14 1.01
Total 5.02 2.92 1.68 0.65

Now that the disturbance torques have been characterized, the experiment will

be repeated with the actuators enabled but first the actuators need to be calibrated

and the structural deflection needs to be estimated.
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Figure 4.12. Torque Characterization Maneuver after Installation of Actuators

4.8 Development of an Active Balancing System

In Fig. 4.12(d), it is shown that the first-order torque estimates are changing as a

result of the rotation axis Φ.

In order to negate the effects of the structural flexing that are generating a first-

order disturbance torque, an active balancing system is proposed to actively move

weights to correct for the dynamic imbalance as a result of structural deflections
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by re-balancing the satellite attitude simulator as it rotates about different axes.

Before implementing an active dynamic balancing system, we need to know how the

spacecraft is flexing.

4.8.1 Active Imbalance Estimation.

We desire a control equation in the form of

δm = k−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θx

θy

θ3x

θ3y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.45)

In this form, k−1 is a (3x4) matrix that should be able to account for first-, second-,

and third-order disturbance torques. The following equation shows k−1 matrix with

the components of the matrix replaced with the order of the torque they are able to

correct for

k−1 =

⎡
⎢⎢⎢⎢⎣

τ(θ) τ(θ) 0 τ(θ3)

τ(θ) τ(θ) τ(θ3) 0

τ(θ2) τ(θ2) 0 0

⎤
⎥⎥⎥⎥⎦ . (4.46)

Although the third-order torques could also be induced by implementing a second-

order actuation in the Z−axis as opposed to a third-order actuation in the X − Y -

plane, we chose the latter method over the former as it would require less actuation.

From the data shown in Fig. 4.12(d) the values of k−1(2, 1) and k−1(2, 2) can

be solved with the first-order disturbance torque. We will start by identifying the

components if the graph that will be used to identify the inverse stiffness matrix
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τ12 = τ(θ,Φ)|θ= π
12
|Φ=0

τ21 = τ(θ,Φ)|θ= π
12
|Φ=π

2

(4.47)

τ(θ,Φ)|θ= π
12
|Φ=0 are the values of the first-order torque curve τ(θ

2) shown in Fig. 4.12(d)

at Φ equal to 0. Alternatively, τ(θ,Φ)|θ= π
12
|Φ=0 is the first-order torque at Φ of 90◦.

The values τ12 and τ21 are torques that will be used to calculate k−1(1, 2) and k−1(2, 1),

respectively

k−1(1, 2) = τ12
sin( π

12
)g

k−1(2, 1) = −τ21
sin( π

12
)g
.

(4.48)

Similarly, k−1(3, 1) and k−1(3, 2) can also be calculated from the test results shown

in Fig. 4.12(d)

τ31 = τ(θ2,Φ)|θ= π
12
|Φ=0

τ32 = τ(θ2,Φ)|θ= π
12
|Φ=π

2

(4.49)

where this time τ(θ2,Φ)|θ= π
12
|Φ=0 and τ(θ2,Φ)|θ= π

12
|Φ=π

2
are the torque values of the

second-order torque curve τ(θ2)

k−1(3, 1) = τ31
sin2( π

12
)g

k−1(3, 2) = τ32
sin2( π

12
)g

(4.50)

Finally k−1(2, 3) and k−1(1, 4) can be calculated from the third-order torque curve

τ(θ3)

τ14 = τ(θ3,Φ)|θ= π
12
|Φ=0

τ23 = τ(θ3,Φ)|θ= π
12
|Φ=π

2

(4.51)

substituting τ14 and τ23 into the equation for k−1(1, 4) and k−1(2, 3)
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k−1(1, 4) = τ14
sin3( π

12
)g

k−1(2, 3) = −τ23
sin3( π

12
)g

. (4.52)

Now the only terms remaining to estimate are k−1(1, 1) and k−1(2, 2) and they

cannot be estimated from the data provided in Fig. 4.12(d). As a result, we imple-

mented five static balance estimates at five displacements in the X− and Y−axes and

estimated the imbalance in the rotation axis. We plotted the results of the imbalance

estimates against the rotation θ in Fig. 4.13, the two linear best fits were calculated

and set equal to k−1(1, 1) and k−1(2, 2).
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Figure 4.13. Estimation of k−1(1, 1) and k−1(2, 2)

Now that we have solved for all of the desired components we can define k−1 as

k−1 =

⎡
⎢⎢⎢⎢⎣
−226 −1335 0 −16848

−1317 −341 15891 0

−1634 3253 0 0

⎤
⎥⎥⎥⎥⎦
gmm

rad
. (4.53)

Furthermore, the standard deviation from the original components that were used
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to estimate k−1 can also be substituted into the previous equations to give us an

understanding of the uncertainty in the k−1 matrix

σk−1 =

⎡
⎢⎢⎢⎢⎣

151 222 0 7288

165 118 4228 0

832 351 0 0

⎤
⎥⎥⎥⎥⎦
gmm

rad
(4.54)

Now that we know how our mass is moving with respect to the rotation axis, we

needed to calibrate the linear actuators so we can counteract the estimated imbalance.

4.9 Calibration of the linear actuators

In order to calibrate the linear actuators, the actuators were set to 20 mm incre-

ments between ±40 mm. Once the actuators were in position, five torque characteri-

zation maneuvers were executed about both the X− and Y−axes and the estimated

local imbalances were calculated for all of the maneuvers. It is important to note

that the X−actuator was installed in the negative X−direction which means that a

command signal of −45 mm is fully extended and a signal of 45 mm is fully retracted.

The results from the fifty runs per actuator were linearly interpolated and resulted

in the following control Jacobian

M =

⎡
⎢⎢⎢⎢⎣

62.33 −1.84 1.39

0.44 63.59 −0.46

−16.28 −2.91 60.03

⎤
⎥⎥⎥⎥⎦
gmm

mm
. (4.55)

Once the control Jacobian was defined we can calculate the movement of the masses

as a result of a given command signal
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(b) Y imbalance from X Actu-
ator
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(c) Z imbalance from X Actu-
ator
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(d) X imbalance from Y Actu-
ator
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(e) Y imbalance from Y Actu-
ator
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(f) Z imbalance from Y Actu-
ator
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(g) X imbalance from Z Actu-
ator
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(h) Y imbalance from Z Actu-
ator
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(i) Z imbalance from Z Actua-
tor

Figure 4.14. Imbalance Estimates as a Function of Commanded Actuator Positions

δmact = M

⎡
⎢⎢⎢⎢⎣

dmx

dmy

dmz

⎤
⎥⎥⎥⎥⎦ (4.56)

and the command signal can be calculated by inverting the control Jacobian and

multiplying it by the desired change in mass.
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δmact = −k
−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θx

θy

θ3x

θ3y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.57)

and then we set

M

⎡
⎢⎢⎢⎢⎣

dmx

dmy

dmz

⎤
⎥⎥⎥⎥⎦ = −k−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θx

θy

θ3x

θ3y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.58)

so that a simple inversion of the M matrix results in the desired actuator command

signal

⎡
⎢⎢⎢⎢⎣

dmx

dmy

dmz

⎤
⎥⎥⎥⎥⎦ = −M−1k−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θx

θy

θ3x

θ3y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.59)

Now that the actuators have been installed, calibrated, and enabled, the torque

characterization process was repeated and the results are shown in Fig. 4.15. It is

clear from Figs. 4.15(a), 4.15(b), and 4.15(c) that there is still a slight disagreement

between the local balance and the global balance resulting in approximately 2 mNm

torque. Figure 4.15(d) shows that the torque curves have become more constant

with respect to Φ and the maximum torque evaluated at 15◦ has now been reduced to

approximately 3 mNm. The results from Fig. 4.15(d) have been evaluated at multiple

deflections and the resulting torques are shown in Tab. 4.5.

Table 4.6 shows a side by side comparison of the disturbance torques evaluated
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Figure 4.15. Torque Characterization Maneuver with Actuators Enabled

Table 4.5. Torque Analysis with Actuators Enabled

Order of Torque δθ 15◦ 10◦ 5◦ Std Dev at 15◦

Zeroth 0.82 0.82 0.82 0.20
First 1.52 1.10 0.51 0.62
Second 1.78 0.79 0.20 0.43
Third 2.31 0.68 0.09 1.00
Total 2.66 1.17 0.45 0.60
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at 15◦ both before and after the linear actuators were installed. This data shows a

slight increase in the zero-order torque, but a significant decrease in the first-order

torque, for an overall torque decrease of 47%.

Table 4.7 also compares the disturbance torques with and without the actuators

enabled, but this time it evaluates the torques at θ of 5◦. Once again there is a slight

increase in the zeroth-order component, and a 55% decrease in the second-order torque

but with the actuators enabled the disturbance torque varies less as a function of Φ

so when we compare the maximum torques from both cases, the actuators were able

to reduce the maximum expected disturbance torque by 73.2%.

4.10 Conclusion

In this chapter we experimentally identified and then developed and analyzed a

method to actively correct for gravitational disturbance torques. This chapter started

by presenting a torque characterization maneuver that confirmed the invalidity of the

rigid body assumption on AFIT’s satellite simulator called SimSat. We identified a

second significant first-order disturbance torque which accounted for 14% of the avail-

able torque at a rotation of 15◦ about an axis in the X − Y plane. Upon evaluating

the potential sources of disturbance torques, we hypothesized that the disturbance

torque was due to structural deflection and added structural reinforcements and re-

duced the ballast mass to decrease structural deflection. The torque characterization

Table 4.6. Comparison of Torques evaluated at at 15◦ with Actuators Disabled and

Actuators Enabled

Order of Torque δθ Actuators Disabled Actuators Enabled Percent Difference %
Zeroth 0.65 0.82 -26.2%
First 3.43 1.52 55.7%
Second 2.03 1.78 12.3%
Third 3.74 2.31 38.2%
Total 5.02 2.66 47.0%
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Table 4.7. Comparison of Torques evaluated at at 5◦ with Actuators Disabled and

Actuators Enabled

Order of Torque δθ Actuators Disabled Actuators Enabled Percent Difference %
Zeroth 0.65 0.82 -26.2
First 1.14 0.51 55.3
Second 0.23 0.20 13.0
Third 0.14 0.09 35.7
Total 1.68 0.45 73.2

process was repeated, with a 91% decrease in first-order disturbance torques and a

87% decrease in all torques when evaluated at 15◦ rotation about a test axis in the

X − Y plane. In order to further decrease the disturbance torques, we added three

linear torque actuators to actively counteract the disturbance torques which resulted

in an additional 55.7% decrease in first-order torques and 47% decrease in all dis-

turbance torques when evaluated at a 15◦ rotation about the X − Y plane. The

total gravitational disturbance torque was decreased from approximately 14.92% to

approximately 1.08% of SimSat’s available torque when rotated 15◦ about an axis in

the X − Y plane. Additionally, enabling the linear actuators resulted in a 73% de-

crease in total disturbance torques when evaluated at 5◦, dropping the gravitational

disturbance torque to approximately 0.18% of the available torque. The result of this

research suggests that the rigid body assumption should always be verified on satellite

simulators and provides a methodology to do so. In the event that the platform fails

the rigid body assumption, the equations of the dynamic imbalance can be calculated

from the proposed torque characterization maneuver. A set of linear actuators can

then be programmed to counteract not just the zero- and first-order component of

the dynamic imbalance but higher-order torques as well.

110



V. Hardware Testing of Hybrid Steering Logic for

Single-Gimbal Control Moment Gyroscopes

In this chapter, a series of experiments were conducted to evaluate the performance

of the Hybrid Steering Logic (HSL) for a SGCMG array. HSL is called a “hybrid”

because it combines two methods of singularity avoidance, torque error and null

motion. Previous publications have shown HSL to be more effective in simulation

than Local Gradient (LG) and Singular Direction Avoidance (SDA), the two methods

that HSL is comprised of. Therefore, this chapter will primarily focus on duplicating

the increase in effectivity when implementing HSL on the AFIT second generation

satellite attitude simulator (SimSat). Although this has been attempted previously

[41] as we will discuss later in Sec. 5.2, there were some anomalies in the experiment

and the researchers felt that with an increased MOI characterization and a reduction

and identifications of the disturbance torques that the experiment can be repeated

and provide more conclusive results.

5.1 Introduction

Single gimbal control moment gyroscope (SGCMG) arrays have been used in

spacecraft that require large amounts of torque, whether it be for very large space-

craft, like the International Space Station, under standard operating conditions or

smaller spacecraft, like the Worldview spacecraft, that are required to perform rapid-

slew maneuvers. Control moment gyroscope (CMG) arrays are chosen for these types

of applications because they capitalize on a phenomenon known as torque amplifica-

tion. By using an electric gimbal motor to re-orient a spinning flywheel, the induced

counter-torque is equal to the product of the gimbal rate and the flywheel angular

momentum h0. This design allows a relatively low-torque gimbal motor, re-orienting a
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flywheel, to effectively impart a counter-torque on the spacecraft orders of magnitude

larger than its torque rating [25].

Aside from the torque advantage of CMG arrays, they are also inherently prone

to singularities [21]. The previously discussed singularities are due to the fact that

a SGCMG can only produce torque normal to both its body-fixed single gimbal axis

and its flywheel momentum vector. Therefore, a SGCMG can only instantaneously

produce torque about one axis. As a result, a CMG array often employs multiple

SGCMGs in an array to produce an available torque that spans the standard three

dimensional Euclidean space. Though dual gimbal control moment gyroscopes behave

similarly with the addition of another gimbal axis, only the dynamics associated with

SGCMGs will be analyzed in this chapter, as they are commonly used in spacecraft

applications.

Each SGCMG in the array has a flywheel momentum vector that is typically

changing direction, with respect to the spacecraft body frame, which makes the avail-

able torque a function of the gimbal angle. Therefore, the available torque for a CMG

array is a function of the n fixed gimbal axes and the time varying gimbal angles,

where n is the number of SGCMG in the array. As these gimbal angles change, the

available torque vector from each gimbal changes and affords the opportunity for the

available torque vector of two gimbals to align, instantaneously reducing a degree of

freedom for the array. One singularity avoidance method, which is commonly used

to avoid this, is to only operate in a narrow band of gimbal angles. This limits the

CMG array to operate in a small portion of its momentum envelope. One type of

CMG array that implements this singularity avoidance technique is the 3/4 box con-

figuration [21]. Unfortunately, operating within a small portion of the CMG array’s

angular momentum envelope requires the flywheels to store larger amounts of angular

momentum to achieve the same amount of available torque and momentum storage.
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This increased angular momentum requirement results in higher spin rates or larger

flywheels.

Since increasing the operational spin rate of a motor is not always possible, in-

creasing the angular momentum of a CMG often results in larger flywheels that are

typically heavy and bulky. Since weight and volume are strong considerations for

launch cost, using larger, heavier flywheels is not always desirable. An additional

option for singularity avoidance is to couple two SGCMGs specifically to produce a

torque in one direction as done with the scissor pair configuration [43]. A disadvan-

tage of the scissor pair configuration is that it requires six SGCMGs to produce a

torque that spans three-space [21]. The pyramid configuration has four SGCMGs

where the torque plane from each SGCMG forms the side of a pyramid. These four

unique torque planes make it impossible for all four torque vectors to become co-

linear, guaranteeing a Jacobian with a minimum rank of two. This means that at

singularity the CMG array can still create torque in two directions, as opposed to a

rank one singularity where torque can only be produced in one direction [22].

5.2 Background

The research conducted in this chapter is a re-evaluation of research that was

previously conducted on SimSat. This research was re-evaluated since the previous

results were somewhat inconclusive [41]. The experiment consisted of repeating a

single attitude control maneuver being repeated to test three steering laws with each

steering law being tested at three different gimbal starting positions–away from singu-

larity, near an elliptic singularity, and near a hyperbolic singularity. The reason that

the research is considered somewhat inconclusive is that for the third set of initial

conditions, where the CMG array began near hyperbolic singularity, all three singu-

larity avoidance steering laws came within a close enough proximity to a singularity
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that the gimbal rates became highly erratic and ultimately exceeded the gimbal rate

limit of 1.5 radians per second. It was hypothesized that a potential cause for the

irregularity that lead to a disagreement between the simulated results and the experi-

mental results was that excessive gravitational disturbance torques might have driven

the CMG array closer to the singularity than the original simulation. One way to

estimate the magnitude of the disturbance torques is to evaluate the conservation of

total spacecraft angular momentum by summing the estimated angular momentum

of SimSat with the estimated angular momentum of the CMG array. In other words,

if we knew the angular momentum of both SimSat and the CMG array, then any non-

zero angular momentum would be a result of the time integration of the gravitational

disturbance torques or the disturbance torque angular momentum. Unfortunately, it

was impossible to implement this additional analysis on the original data due to the

lack of accuracy and precision in the MOI estimate. After the MOI characterization

work implemented in Chapter III and disturbance torque characterization and cor-

rection from Chapter IV it was decided that the HSL experiment should be repeated,

not only in hopes of generating more conclusive results due to the reduction in grav-

itational disturbance torques, but to allow us to evaluate the conservation of total

angular momentum to verify that the CMG array is well characterized and verify that

we have effectively reduced the gravitational disturbance torques. Before we discuss

the CMG steering laws and the experiment, we will first discuss the experimental

platform SimSat with an emphasis on the changes that have been made since the

original experiment.

5.3 SimSat II

The platform used for the presented experiment is AFIT’s simulator satellite,

(SimSat). For the original experiment, SimSat had the following estimated MOI
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⎡
⎢⎢⎢⎢⎣

7.58 0 0

a 0 8.12 0

0 0 13.15

⎤
⎥⎥⎥⎥⎦ (5.1)

The non-diagonal components of the MOI matrix were not estimated and were ap-

proximated as zero. The diagonal components of the MOI estimates were calculated

without the inclusion of first-order torque correction and were estimated with a rel-

atively low precision of ±8% [25]; therefore, the diagonal components are estimated

to be within ±10%. The previous test configuration is shown in Fig. 5.1(a).

(a) Original SimSat Test Configuration (b) CMG Configuration

Figure 5.1. SimSat Pyramid CMG Array

SimSat is controlled by a dSPACE® MicroAutoBox® that determines the at-

titude by integrating the angular rates that are provided by a Northrop Grumman

LN−200 fiber optic gyroscope. The LN-200 samples the angular rates at 400 Hz;

the signal is then down-sampled via a SkEyes Unlimited LN-200 interpreter board

to 200 Hz, making the signal compatible with the dSpace real-time-workshop sam-

ple frequency of 1000 Hz. Once the MicroAutoBox® has the current orientation,

it compares the current orientation to the desired orientation through a feedback

linearized, quaternion error Proportional-Integral-Derivative (PID) controller to cal-
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culate the desired torque. Next, a steering law, like HSL, calculates the desired δ̇, an

array consisting of the gimbal rates of the CMG array, to best produce the desired

torque. The δ̇ command is then sent through a hard 1.5 radian per second limiter

and then split to the four gimbal motors. The individual spin rates are sent over a

CAN interface at a rate of 10 Hz to the four Maxon EPOS 70/10 controllers that

are used to command the motors. Each EPOS 70/10 will respond to one of the four

gimbal rate commands. To reduce the data traffic on the CAN bus, the EPOS uses

a shaft encoder on its respective gimbal motor to measure the current motor spin

rate. It then uses a separate, on-board closed-loop PID controller to calculate the

desired motor command signal required to bring the gimbal motor to the desired

gimbal motor spin rate.

The gimbal motor is an EC-MAX-30 brushless motor with a GP-32 159:1 reduction

gearbox. The gimbal assembly has an MOI about the gimbal axis of 0.00352 kgm2;

and as previously mentioned, the gimbal rotation rate has a hard saturation rate limit

of 1.5 radians per second. The higher the value of the gimbal rate saturation, the

more torque the CMG can produce, resulting in larger stresses on the structure and

bearings. SimSat was structurally over-designed as weight was not much of a concern,

but for on orbit spacecraft this is typically not the case and gimbal rates are a larger

concern. As a result, we implement a gimbal rate limit of 1.5 radians per second to

better duplicate on orbit platform restrictions.

The presence of a gearbox introduces 1◦ of gear lash. Therefore, a shaft encoder

was added directly to the gimbal assembly to measure the actual angle of the gimbal.

A Baumer Electric G0AMH absolute 13 bit optical encoder with a resolution of 8192

steps per turn was chosen.

The SimSat platform has a four SGCMG pyramid configuration with a desired

skew angle Θ of 54.74◦. This pyramid configuration was chosen due to its size,
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simplicity, and its minimum Jacobian rank of two, meaning that there will only be a

maximum of one singular direction. Furthermore, a pyramid skew angle Θ of 54.74◦

was chosen, to produce a near symmetric momentum envelope in all three axis. The

current SimSat CMG configuration is shown in Fig. 5.1 [25].

Each CMG flywheel has a moment of inertia of approximately 0.00165 kgm2 and

are spun at a nominal 2600 rpm using a Maxon EC-45 flat motor. This results in

each flywheel storing approximately 0.45 Nms of angular momentum.

5.3.1 Modifications to SimSat Since Previous Experiment.

After the configuration changes in Chapter IV, the MOI estimation method pre-

sented in Chapter III was repeated. The MOI estimate after the configuration changes

is now

⎡
⎢⎢⎢⎢⎣

6.81 -0.16 0.04

-0.16 10.04 -0.14

0.04 -0.14 12.88

⎤
⎥⎥⎥⎥⎦ . (5.2)

The MOI estimate shown in Eq. (5.2) has an estimated accuracy of approximately

±0.013 kgm2 or approximately ±0.17% of the MOI estimate about theX−axis. After

the configuration change and corresponding reduction in the MOI about the X−axis,

the previous controller gains were driving SimSat unstable. Since the MOI was known

with a much higher precision that was achievable previously, we decided to implement

PID controller gains based on a desired natural frequency of the system response and

a desired dampening coefficient. This methodology differs from the previous gains

which were

117



P = 5

I = 0.1

D = 11

(5.3)

for all three axes. To calculate the desired controller gains, we first consider the

following second order differential equation that represents the feedback linearized

system response

Iω̈ + Dẋ + Px = 0. (5.4)

In this form the controller gains are P and D and I is the moment of inertia. Instead,

we desired a system response in the following format

ẍ+ 2ζω0ẋ+ ω2
0x = 0. (5.5)

When a second-order differential equation is written in this form, ω0 is the natural

frequency and ζ is the damping coefficient. These two values are selected based on

the desired system response. The desired gains P and D can be calculated from ω0,

ζ, and the MOI estimate I as

P = ω2
0I

D = 2ζω0I

. (5.6)

For SimSat we chose the following controller specifications

ω0 = 0.3

ζ = 0.5

(5.7)

which stabilized the system but resulted in smaller commanded torques and longer

118



maneuver times. When we substitute into Eqs. (5.6) we calculated the following gains

Px = 0.61

Py = 0.90

Pz = 1.16

Dx = 2.04

Dy = 3.01

Dz = 3.86

(5.8)

which are less aggressive than the original gains and can be easily seen when in Sec. 5.7

we compare the platform response from the previous controller gains to the platform

response with the new controller gains. The gain for the integration of the error I

was kept at 0.1.

In addition to implementing new gains, a linear actuation system was implemented

to correct for the gravitational disturbance torques due to structural deflection. First,

an equation for the structural deflection was assumed to be in the form

δm = k−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θx

θy

θ3x

θ3y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.9)

where δm is a mass-normalized representation of the change in the center of mass and

represented with the units of gmm. When using quaternions, the current orientation

can be considered a vector that represents a rotation from a nominal position. If you

took the vector that represents the current position and projected the vector onto

the X − Y plane, θx and θy are the angles represented by the vector components in

the X− and Y−axes respectively whose vector sum represents the projection of the
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current rotation vector onto the X − Y plane.

The matrix k−1 is the inverse stiffness matrix and was experimentally estimated

to be

k−1 =

⎡
⎢⎢⎢⎢⎣
−226gmm

rad
−1335gmm

rad
0 −16848gmm

rad3

−1317gmm
rad

−341gmm
rad

15891gmm
rad3

0

−1634gmm
rad

3253gmm
rad

0 0

⎤
⎥⎥⎥⎥⎦ . (5.10)

The linear actuation system is used to counteract the change in the center of the mass.

The linear actuation system consists of three linear actuators that are nominally at

50% deflection or 50 mm. The control system calculates desired deviations from the

nominal position

⎡
⎢⎢⎢⎢⎣

dmx

dmy

dmz

⎤
⎥⎥⎥⎥⎦ (5.11)

where dmx, dmy, and dmz are the commanded distances from the neutral position for

the linear actuators in the X−, Y−, and Z−axes respectively. The linear actuators

have masses of approximately 60 g attached to them and the changes in the position

result in the following experimentally estimated normalized movement in the center

of mass

M =

⎡
⎢⎢⎢⎢⎣

62.33 −1.84 1.39

0.44 63.59 −0.46

−16.28 −2.91 60.03

⎤
⎥⎥⎥⎥⎦
gmm

mm
. (5.12)

The desired commanded position of the linear actuation system is calculated as a

function of the current position as
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⎡
⎢⎢⎢⎢⎣

dmx

dmy

dmz

⎤
⎥⎥⎥⎥⎦ = −M−1k−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θx

θy

θ3x

θ3y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.13)

The linear actuation system was implementation in Chapter IV and experimental

results suggest an estimated ±3 mNm disturbance torque for rotations about the

X − Y plane of less than 15◦.

5.3.2 Attitude Control System.

CMG arrays are angular momentum storage devices similar to RW. Unlike a

RW that has a fixed angular momentum direction and a varying angular magnitude,

a CMG has a nearly constant angular momentum magnitude and induces a torque

on the spacecraft by changing the direction of the angular momentum vector. As

a result, the governing equations for CMG array are significantly different than the

equations that govern an RW array. In this section we will derive the equations of

motion for the CMG array.

5.3.3 Rigid Body Dynamics.

Angular momentum is defined as

�h = I �ω (5.14)

where I is the object’s mass MOI tensor, and �ω is the object’s angular velocity [33].

The time rate of change of centroidal angular momentum is

�M = �̇h =
d

dt

{i}

�h (5.15)
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where �M represents the applied moments and �̇H represents time rate of change of

centroidal angular momentum with respect to an inertial reference frame {i}.

The derivative of Eq. (5.15) can be taken in the body frame {b}, where the MOI

is assumed to be constant, and can be written as.

�M =
d

dt

{i}

�h = I
d

dt

{b}

�ω + �ω × I �ω (5.16)

where I is the MOI expressed in the body frame about the center of mass and �ω is

the angular rate of both the body and body frame relative to an inertial frame.

�M = I
d

dt

{b}

�ω + �ω × I �ω, (5.17)

Eq. (5.17) is commonly known as Euler’s rotation equations of motion for rigid bodies.

Converting Eq. (5.17) to Newtonian notation results in

�M = I �̇ω + �ω × I �ω (5.18)

where all vectors are expressed in the body frame. Euler’s equation allows for analysis

of the spacecraft dynamics while operating in the body frame. Except where explicitly

stated, all equations for the remainder of Section 5.3 are expressed in the body frame.

5.3.4 Angular Momentum Exchange.

Euler’s equations assume the spacecraft is a single rigid body, but a spacecraft

containing movable actuators clearly is not. In order to apply the equations developed

in Section 5.3.3, it is necessary to break the spacecraft’s angular momentum up as

�hnet = �hbody + �hacs. (5.19)
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Substituting Eq. (5.15) in Eq. (5.19)

�M = I �̇ω + �̇hacs + �ω ×
(
I �ω + �hacs

)
. (5.20)

Now, if the applied external moments are assumed to be negligible, a valid assumption

for most spacecraft over short time spans, Eq. (5.20) can be re-arranged, such that

I�̇ω = −�̇hacs − �ω ×
(
I �ω + �hacs

)
. (5.21)

From Eq. (5.21), it is clear that changing �̇hacs in magnitude or direction will create

an equal and opposite change in �̇ω. As these rates are integrated over time they show

the angular momentum that is exchanged between the actuator and the body, hence

their description as ‘Momentum Exchange Devices.’ The reaction wheels on SimSat

were disabled during the experiment; therefore, future references to Euler’s equation

will have �hacs and �̇hacs replaced with �hcmg and �̇hcmg.

5.3.5 Control Moment Gyroscopes.

In this section we will present a concise overview of the governing equations;

however, an in depth derivation of the equations of motion for the CMG configuration

on SimSat was performed by McChesney [25].

The angular momentum of the CMG array is the sum of the four individual SGCMG,

expressed as

�hcmg =
4∑

i=1

⎛
⎜⎜⎜⎜⎝R3(θi)

T

⎡
⎢⎢⎢⎢⎣

IGcos(Θ)δ̇i + IRΩsin(Θ)cos(δi)

−IRΩsin(δi)

−IGsin(Θ)δ̇i + IRΩcos(Θ)cos(δi)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ . (5.22)

where IG is the MOI of the rotating CMG assembly about the gimbal axis. Addi-
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tionally, IR is the MOI about the CMG flywheel’s rotation axis and Ω is the angular

velocity of the CMG flywheel about the rotation axis. The R3(θi) term represents

a the rotation matrix that rotates the angular momentum from the CMG reference

frame into the spacecraft body frame. Differentiating with respect to an inertial frame

results in

�̇hnet = I �̇ω +
4∑

i=1

⎛
⎜⎜⎜⎜⎝R3(θi)

T

⎡
⎢⎢⎢⎢⎣

IGcos(Θ)δ̈i − IRΩsin(Θ)sin(δi)δ̇i

−IRΩcos(δi)δ̇i

−IGsin(Θ)δ̈i − IRΩcos(Θ)sin(δi)δ̇i

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠+

�ω × I �ω + �ω ×

4∑
i=1

⎛
⎜⎜⎜⎜⎝R3(θi)

T

⎡
⎢⎢⎢⎢⎣

IGcos(Θ)δ̇i + IRΩsin(Θ)cos(δi)

−IRΩsin(δi)

−IGsin(Θ)δ̇i + IRΩcos(Θ)cos(δi)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ .

(5.23)

Equation (5.23) can be simplified if certain assumptions are made, specifically

δ̇i � Ω

δ̈i � Ωδ̇i

(5.24)

which were shown to be valid for SimSat by McChesney [25]. Applying the assump-

tions in Eqn. (5.24) reduces Eq. (5.22) to

�hcmg ≈ IRΩ

⎡
⎢⎢⎢⎢⎣
− sin(Θ) sin(δ1) − cos(δ2) + sin(Θ) sin(δ3) + cos(δ4)

− cos(δ1) + sin(Θ) sin(δ2) + cos(δ3) − sin(Θ) sin(δ4)

cos(Θ) sin(δ1) + cos(Θ) sin(δ2) + cos(Θ) sin(δ3) + cos(Θ) sin(δ4)

⎤
⎥⎥⎥⎥⎦ .

(5.25)

Furthermore, by defining a matrix A as

A =
∂δ

∂hcmg

(5.26)
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the matrix A can be evaluated for the current CMG array as

A =

⎡
⎢⎢⎢⎢⎣
−sin(Θ)cos(δ1) sin(δ2) sin(Θ)cos(δ3) −sin(δ4)

sin(δ1) sin(Θ)cos(δ2) −sin(δ3) −sin(Θ)cos(δ4)

cos(Θ)cos(δ1) cos(Θ)cos(δ2) cos(Θ)cos(δ3) cos(Θ)cos(δ4)

⎤
⎥⎥⎥⎥⎦ . (5.27)

After defining A, �̇hcmg can be approximated as

�̇hcmg ≈ IRΩAδ̇ (5.28)

where δ̇ is defined as

δ̇ =

[
δ̇1 δ̇2 δ̇3 δ̇4

]T
(5.29)

Eq. (5.23) then reduces to

�̇hnet = I �̇ω + IRΩAδ̇ + �ω × I �ω + �ω × �hcmg. (5.30)

In this form, IRΩAδ̇ is the controller solution and the control command δ̇ must

be solved for. However the Jacobian A is not square and is therefore not directly

invertible. Solutions to this equation, when applied to CMG arrays, are known as

steering laws.

5.4 Singularities

In mathematics, a singularity is defined as something that is undefined or not

well behaved. In controls, it is often used to describe a scenario where the set of

possible outputs is a subset of the desired outputs. This results in desired outputs

that cannot be produced and therefore the controls required to obtain the output
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cannot be defined. When controlling a satellite’s attitude with a CMG array, gimbal

rates δ̇ are commanded to produce torques in a Euclidean three-space. As a result,

a CMG array is considered at singularity when the Jacobian has a rank less than 3.

This means there is at least one axis in the desired three dimensional output about

which the CMG array cannot produce a torque.

5.4.1 Elliptical Singularities.

There are two primary types of singularities: elliptical and hyperbolic [21]. At

an elliptic singularity, the angular momentum of the ACS has only one solution that

results in a singular Jacobian and a unique set of gimbal angles δ that produce the

desired angular momentum. This single solution results in no possibility of having a

different set of gimbal angles δ2 that produce the same angular momentum with a

full rank Jacobian.

Elliptic singularities have two subsection types: internal and external. As the

name suggests, external elliptic singularities exist on the exterior of the momentum

envelope. An example would be a pyramid configuration at

δ =

[
π/2

π/2
π/2

π/2

]T
. (5.31)

Since this is the only configuration that will produce maximum momentum in the

Z-axis, this is an example of an external elliptical singularity.

5.4.2 Hyperbolic Singularities.

A hyperbolic singularity is one in which the gimbal angles required to achieve

the desired angular momentum are not unique. These solutions exist on continuous

solution sets that can be traversed using null motion–gimbal rates that have a net

zero effect on the angular momentum. Hyperbolic singularities have two subsection
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types: non-degenerate and degenerate [21].

For non-degenerate hyperbolic singularities, there exists a set of gimbal angles that

produce the same angular momentum but have a full ranked Jacobian. An example of

a non-degenerate hyperbolic singularity for the CMG array with angular momentum

provided in Eq. (5.25) at the gimbal angles

δ =

[
π/2

−π/2
π/2

−π/2

]T
. (5.32)

This is a zero momentum configuration like

δ =

[
0 0 0 0

]T
(5.33)

however, the Jacobian is singular in Eq. (5.32) and not in Eq. (5.33); therefore,

Eq. (5.32) represents a non-degenerative hyperbolic singularity, respectively.

5.4.3 Mathematical Characteristics of Singularities.

In order for null motion to exist, there are first- and second-order necessary condi-

tions that must be satisfied. The first-order condition for any potential null vector is

that it exists in the null space of the Jacobian; this requirement ensures the first-order

torque contributions are zero. The second-order necessary condition is the require-

ment that the second-order effects must also be zero [1; 21]. At singularity, A has a

rank of two. For a four CMG configuration this ensures two candidate null vectors:

N1 and N2. Let matrix Q represent the second-order change in momentum along a

singular axis due to N1 and N2. In order for there to be a net zero change in angular

momentum, there has to exist a vector λ comprised of a linear combination of N1

and N2 that produces a net zero effect on the momentum. This linear combination

λ would have to satisfy the following equation
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λ
TQλ = 0. (5.34)

For a four CMG arrangement, a simple way to determine if this equation has a solution

is to calculate the determinate of Q. If Q is definite, then no real vector λ can satisfy

the zero momentum change requirement. Therefore, a positive determinate indicates

an elliptical singularity while a negative or zero value of det[Q] indicates a hyperbolic

singularity.

5.5 Steering Laws

Once the desired controller solution ḣcmg is obtained, the gimbal rates δ̇ must be

computed from

ḣacs = ḣcmg = A(δ)δ̇ . (5.35)

Difficulties arise in trying to compute the corresponding δ̇. The primary difficulty

is due to the fact that the matrix A defined in Eq. (5.27) is an 3xN matrix where

N is the number of gimbals in the CMG configuration. For a configuration of three

full range SGCMGs it is possible for the available torque vector of all SGCMGs to

become coplanar such that a column of the Jacobian can be represented as a linear

combination of the other two. This would be considered a rank two singularity since

the control matrix A has only two linearly independent columns, and the available

torque spans only a plane instead of all three dimensions. As a result, any desired

torque outside of the plane is unobtainable. One method used to counter this is to

employ four SGCMG in the array. This requires multiple gimbal alignments to occur

for A to have a rank less than three. Since this generally produces a matrix A that

is wider than it is tall, the easiest way to solve for δ̇ is to take the Moore-Penrose
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Pseudoinverse (MPPI)

δ̇ = AT(AAT)−1ḣacs (5.36)

where the pseudo-inverse operation is defined as

AT(AAT)−1
def
= A+. (5.37)

For (AAT)−1 to be well defined, A must be at least rank three. Even though the

pyramid configuration has a minimum rank of two, that still causes a poorly scaled

A+ and the numerical methods used to compute the MPPI begin to break down. It

should be noted that none of the steering laws used in this chapter can escape gimbal

lock, as a result this work will concentrate on combining two singularity avoidance

methods called SDA [8] and LG [5], which are discussed next.

5.5.1 Singular Direction Avoidance.

The singular direction avoidance (SDA) method is an alternative approach to

compute the pseudo-inverse that induces a torque error in the most singular direction.

In the Singular Value Decomposition (SVD) approach, the matrix being inverted is

decomposed into a left unitary matrix U, a right unitary matrix VT, and a diagonal

matrix Σ whose components are

Σ =

⎡
⎢⎢⎢⎢⎣

σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

⎤
⎥⎥⎥⎥⎦ (5.38)

where each σi is a singular value of the Jacobian. After decomposition, A can be

written as

A = UΣVT (5.39)
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and the pseudo-inverse of A is simply

A+ = VΣ+UT (5.40)

where the pseudo-inverse of Σ is simply

Σ+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
σ1

0 0

0 1
σ2

0

0 0 1
σ3

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.41)

for all σi �= 0. As the CMG array approaches a singular configuration, the CMG array

us unable to produce torque about one axis, therefore the singular value representing

the available torque in that direction approaches zero, and the Σ+ matrix becomes

poorly defined. One way to avoid this is with the singularity robust steering logic

[38]. By defining a small singularity parameter

0 < γ0 << 1 (5.42)

a singularity robust Jacobian can be computed from

ASR = V

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

1
+γ0

0 0

0 σ2

σ2

2
+γ0

0

0 0 σ3

σ2

3
+γ0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
UT . (5.43)

Now the gimbal rates δ̇ can be computed from

δ̇ = ASRḣacs . (5.44)
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By adding the singularity parameter γ0 to all three principal axes, this method is

robust enough to stabilize the pseudo-inverse of any rank singularity. However, in

doing so, torque error is introduced to all three output directions. This error is not

desirable on spacecraft with highly accurate tracking requirements, so it should be

reduced whenever possible. One way to reduce the torque error is to use a method

introduced by Ford and Hall commonly referred to as SDA [8]. In SDA, a common

SVD form is used such that the diagonal singular value matrix Σ is rotated such that

the diagonal values σi are non-increasing. In this form, the smallest singular value is

σ3 [14]. Furthermore, the distance from singularity is defined as

m =

√
det(AAT) . (5.45)

This distance from singularity can then be used in a decaying singularity measure γ

from

γ(m) = γ0e
(−μm) (5.46)

which is then included in the inverse of the most singular direction

ASDA = V

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
σ1

0 0

0 1
σ2

0

0 0 σ3

σ2

3
+γ

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
UT (5.47)

and

δ̇ = ASDAḣacs . (5.48)

Though this eliminates the torque error about the two least singular directions, the

SDA method still introduces torque error when approaching all singularities, including

those that can be avoided by using null motion. Next, we will discuss a method that
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does avoid those avoidable singularities and later we will combine these methods as

originally done by Leve [21].

5.5.2 Local Gradient.

Another method to avoid singularities is the local gradient (LG) method [5], which

employs null motion in an attempt to avoid singularities. By using the distance from

singularity m, as defined by Eq. (5.45), an objective function is created from

f =
1

m
(5.49)

the direction away from singularity can be defined as

d = ∇f =
∂m

∂f

(
∂δ

∂m

)T

=
−1

m2

(
∂δ

∂m

)T

(5.50)

the gradient of the objective function d is then projected onto the null space

n = [1−A+A]d (5.51)

where A+ is computer from the SVD method, which can be expanded as

n = [VIVT −VΣUTUΣ+V
T
]d (5.52)

to better identify the projection operator [22]. The projection operation can now be

expressed as

n = Vdiag(0, 0, 0, 1)VTd . (5.53)
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Once the null motion n is calculated, it is then added to the least squares projection

δ̇ = A+ḣacs + n (5.54)

where δ̇ is the required gimbal rates command to produce the desired torque.

5.5.3 Hybrid Steering Logic.

Hybrid Steering Logic (HSL) created by Leve [22] combines the null motion of LG

and the torque error of the SDA method by first calculating two coefficients from

α = α0 exp
−aᾱ exp−μ1m (5.55)

β = β0 exp
−bβ̄ exp−μ2m (5.56)

where α and β are ultimately used to control the amount of torque error and null

motion, respectively. The variables μ1, μ2, a, b, α0, and β0 are tuning parameters

that are typically chosen to meet desired performance requirements. The values of ᾱ,

and β̄ are calculated in real-time, based on the type of singularity being approached.

If the nearest singularity is elliptical, then ᾱ will be chosen to be small and β̄ will be

chosen to be large, this produces a large α and a small β; effectively increasing the

amount of torque error while decreasing the amount of null motion. However, if the

nearest singularity is hyperbolic, then the opposite is chosen.

5.5.4 Determining the Type of Singularity.

In order to differentiate between hyperbolic and elliptic singularities, a calculation

was developed by Leve [21] to determine if there is a proper null space. At first glance,

the available torque from the CMG may appear linear since we have approximated

the available torque and represented it as the Jacobian A, a 4 × 3 matrix that by
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definition will always have a null space. However, the available torque from the CMG

array is non-linear and the matrix A is merely a first order representation of the

available torque. In order for a null solution to exist for the available torque of the

CMG array, the first order requirement that the gimbal angles exist in the null space

of the Jacobian A must be satisfied. In addition, the gimbal angles must also produce

zero second order effects; satisfying a second order requirement for zero torque effects

in the singular direction. To verify that the candidate vectors, those that exist in the

null space of the Jacobian, are truly null vectors, the singular direction is defined as

AT s = 0 . (5.57)

Once the singular direction is calculated, the momentum vectors of the gimbals are

projected into the singular direction.

P = diag(hT
i s) . (5.58)

This projection matrix is then pre- and post-multiplied by N the candidate control

vectors that exist in the null space of the Jacobian A

Q = NTPN (5.59)

where Q is a matrix that represents the second order effects of the candidate vectors

on the momentum in the singular direction. In order for a null space to exist, there

has to exist a real vector λ such that

λ
TQλ = 0 (5.60)

where λ represents a linear combination of the candidate vectors that produce zero
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second order effects required to produce null motion. As a result, the eigenvalues of

Q can determine whether or not a null space exists. In instances where Q is definite,

then Eq. (5.60) cannot be satisfied and therefore a null space does not exist. In these

instances, null motion is not possible and an increased torque error is desired. In

cases where Q is semi-definite or indefinite a null space does exist and therefore less

torque error and more null motion is desired. As a result ᾱ and β̄ are defined as

ᾱ = |Q0 − detQ| (5.61)

and

β̄ =
1

ᾱ
(5.62)

where Q0 is another tuning parameter chosen slightly larger than the maximum value

of detQ to avoid difficulties in calculating β̄. The modified Jacobian is then defined

as

AHSL,α = V

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
σ1

0 0

0 1
σ2

0

0 0 σ3

σ2

3
+α

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
UT . (5.63)

The desired gimbal rate commands δ̇ can then be calculated as

δ̇ = AHSL,αḣ+ βn. (5.64)

It is apparent that at an infinitesimal distance from singularity the rank(AT) is

three. Therefore, the singular direction s is identically zero, which also leads to an

identically zero Q, for all singularities. Therefore, the approach used by Leve [21]

will be implemented that defines a singularity threshold m0, and when the singularity

measure m is below that threshold the configuration will be considered singular. The
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singular direction s will be defined as the rightmost column of U and the null space

N will be defined as the rightmost two columns of V. This allows for singularity

identification, before the configuration actually becomes singular.

5.6 Results

The platform parameters were chosen to closely mimic the simulated results pre-

sented by Leve [21], as seen in Table 5.1. The three algorithms compared in the

experiment were LG, SDA, and HSL. Since HSL has the tuning parameters α0, β0,

a, b, μ1, and μ2 which determine how much of each of the SDA and LG algorithms

to use, the HSL algorithm was used for all three runs. The tuning parameters were

changed as needed to achieve only null motion, only torque error, and a combination

of torque error and null motion. The parameters chosen are shown in Table 5.2. The

tuning parameters chosen were the same used by Leve [21; 22] and again by Wright

[41]. For each control algorithm, three experiments were conducted. One case was

away from singularity, with the initial conditions δ = [0 0 0 0] deg, the second was

near an external elliptic singularity δ = [105 105 105 105] deg, and the third was near

a hyperbolic singularity δ = [15 105 195 -75] deg. The last two being 15◦ away from

the elliptic singularity at δ = [90 90 90 90] deg and the hyperbolic singularity at δ =

Table 5.1. Experimental Parameters

Variable Value Units

I

⎡
⎣ 6.81 -0.16 0.04

-0.16 10.04 -0.14
0.04 -0.14 12.88

⎤
⎦ kgm2

Θ 54.74 deg
e0 [0.04355 -0.087105 -0.043555 0.99430]T —
w0 [0 0 0]T deg /s
h0 0.4492 Nms
Δt 0.001 s
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[0 90 180 -90] deg, respectively. The tuning parameters used for the three controllers

are shown in Table 5.2.

The results from the three controllers are compared with each other based off

of Root Mean Square (RMS) null motion of the gimbal rates δ̇ in deg/sec as well as

torque error in mNm. As a controller approaches singularity, the gimbal rates spike

proportionally to the inverse of the most singular value. In order to keep from over-

tasking the hardware, saturation limits are put in place. The process is shown in

block format in Fig. 5.2.

Figure 5.2. Control Sequence

When the desired gimbal rates δ̇ exceed the saturation limits, the commanded

gimbal rates ˙̃
δ differ from the desired gimbal rates, possibly introducing an additional

torque on the spacecraft that is hardware dependent. Therefore, the torque errors

will first be analyzed as pure controller torque error

τerr = ḣdes −Aδ̇ (5.65)

where δ̇ is the gimbal rates as they exit the steering law. Afterwards the total torque

Table 5.2. HSL Tuning Parameters Used

Steering Law α0 β0 a b μ1 μ2

LG 0 1 0 0 0 1
SDA 0.01 0 0 0 1 0
HSL 0.01 2 1 3 1 1
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error will be analyzed as

τerr = ḣdes −A
˙̃
δ (5.66)

where ˙̃
δ is the gimbal rates as they exit the saturation limits.

5.6.1 Results Excluding Gimbal Rate Saturation.

The nine experimental runs were completed and a comparison of the torque error

RMS are shown in Table. 5.3. The results show that for the case where the CMG

array was away from singularity HSL resulted in 86% less torque error than SDA.

If we consider that the singularity measure m stayed greater than 0.5, then we can

conclude that det[Q] was defined as identically zero for the entire maneuver and ᾱ was

identically two. This means that α for the HSL case was a factor of exp−2 or 0.13 times

the size of α for the SDA case. As a result, we would expect there to be approximately

an 87% difference between the two values and that is experimentally confirmed. We

also see that the case near elliptic singularity results in approximately six times the

amount of torque error but even though α varied throughout the maneuver HSL still

incurred approximately 84% less torque error than the SDA maneuver.

Table 5.4 shows the difference in the RMS null motion between LG and HSL.

Table 5.3. Comparison of Torque Errors between SDA and HSL

Algorithm Type of τerr Percent
Singularity rms mNm Difference

SDA None 5.96× 10−4 -
HSL None 8.08× 10−5 -86%
SDA Elliptic 3.19× 10−3 -
HSL Elliptic 5.08× 10−4 -84%
SDA Hyperbolic 2.2273 -
HSL Hyperbolic 1.4777 -34%

138



Comparing the size of β between LG and HSL for the case where the CMG are

away from singularity results in an estimate that the null motion of HSL should be

multiplied by a factor of 2exp−1.5 or approximately 65% less null motion than LG.

From Table. 5.4 shows approximately 91% reduction in null motion for the case where

the CMG are away from singularity, so we are experiencing an additional 40% larger

reduction in null motion than expected by simply by changing the coefficient.

Figure 5.3 shows the torque error from the three SDA maneuvers next to the

torque error from the three HSL maneuvers. Figure 5.4 shows the torque error from

the three LG maneuvers next to the three HSL maneuvers.

5.6.2 Results with Gimbal Rate Saturation.

The values shown in Sec. 5.6.1 represent the best case scenario – the gimbal rate

limits never reach saturation. During the maneuver near a hyperbolic singularity, the

commanded gimbal rates exceeded the gimbal rate saturation limits of approximately

86◦ or 1.5 rad per second. Once the gimbal rates exceeded the defined limit the

gimbal rates were reduced to 86◦ inducing an additional torque error not accounted

for in the control algorithm. After accounting for gimbal saturation, the torque

error applied to the test platform as a result of this saturation, the combined torque

error was recalculated and is shown in Table 5.5. The commanded gimbal rates and

Table 5.4. Comparison of Null Motion between LG and HSL

Algorithm Type of τerr Percent
Singularity rms mNm Difference

LG None 8.96 -
HSL None 0.78 -91%
LG Elliptic 3.62 -
HSL Elliptic 0.35 -90%
LG Hyperbolic 9.83 -
HSL Hyperbolic 1.02 -90%
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Figure 5.3. Comparison of Torque Error Between SDA and HSL
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Figure 5.4. Comparison of Null Motion Between LG and HSL
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corresponding torque errors are shown in Fig. 5.5.

Table 5.5 shows that all three controllers got close enough to a singularity to reach

the gimbal rate saturation limits. When the gimbal rate limits were exceeded, SDA

outperformed HSL and LG. There are two possible reasons for the inability to avoid

the singularity. The first is that the gimbals are only being commanded at a rate of 10

Hz and the second possible reason is that the singularity avoidance coefficients were

not aggressive enough for the controller that is implemented on SimSat. An analysis

of these two potential causes will be analyzed in Sec. 5.7.1, but first we will compare

the current experimental results to the previous experimental results.

Table 5.5. Experimental results

Algorithm Type of τerr Percent
Singularity rms mN-m Difference

SDA Hyperbolic 22.6 -
LG Hyperbolic 62.2 +275%
HSL Hyperbolic 47.2 +209%

5.7 Comparison to Previous Results

Previously when conducting this experiment, the commanded gimbal rates also

exceeded the maximum allowable gimbal rates during the maneuver where the initial

gimbal angles were near a hyperbolic singularity. Table 5.6 show the torque error

for the three steering laws during the previous experiment and Table 5.5 shows the

torque error from the new experiment. After the configuration changes and the reduc-

tion in the gravitational disturbance torques, we hoped to have more control over the

experiment and hopefully better duplicate the simulated results and have experimen-

tal results where the singularity avoidance algorithms better avoid the singularities;

however, it is apparent that the torque error has increased from the old experiment
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Figure 5.5. Torque Error

to the new experiment instead of decreasing as desired. These results suggest that

even though we decreased the disturbance torques and have a better characterization

of our platform, the other changes to the platform such as a decrease in the controller
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gains resulted in a more significant impact on the torque error. However, there are

two valuable pieces of information that can be obtained. The first is that with a

better characterization of the MOI we can analyze the angular momentum during

the maneuver and determine if the CMG array is well characterized. The second

observation that can be made is that the anomaly in the third test case is repeatable,

suggesting that this irregularity is not arbitrary and could be the result of another

underlying cause. The underlying cause of the anomaly will be addressed in more

detail in Sec. 5.7.1, but first we will analyze the angular momentum and determine

if we have successfully reduced the gravitational disturbance torques and whether or

not the CMG array is well characterized.

To analyze the presence of disturbance torques and determine whether or not the

CMG array is well characterized we will need to compare the angular momentum of

the platform during the maneuver to the estimated angular momentum of the CMG

array. Since the MOI of the platform has been experimentally estimated and has an

estimation accuracy of ±1% any errors over 1% of the total angular momentum can

be attributed to disturbance torques or in a mischaracterization of the CMG array.

Figures 5.6(a), 5.6(c), and 5.6(e) are plotted from the old maneuver data. Fig-

ure 5.6(a) shows the platform angular momentum estimate, Fig. 5.6(c) shows the

CMG angular momentum, and Fig. 5.6(e) shows the sum of the two. Figure 5.6(e)

shows us what we refer to as momentum error. If there were no disturbance torques

and our platform was perfectly characterized, then when we add the angular mo-

Table 5.6. Experimental results

Algorithm Case τerr rms mN-m Percent Difference
SDA 3 13.90 0
LG 3 12.63 -9
HSL 3 13.57 -2
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Figure 5.6. Comparison of Previous Maneuver and Current Maneuver
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mentum of the platform to the angular momentum of the CMG array we should get

identically zero. We refer to a non-zero sum as the momentum error and this error

suggests disturbance torques, platform mischaracterization, or a combination of both.

From the first 7 seconds of Fig. 5.6(e) we see a large spike in the momentum error

about the Z−axis that reaches a maximum at approximately four seconds. This spike

corresponds to the spike in the angular momentum of the platform in Fig. 5.6(a). The

strong correlation between the error and the maneuver itself suggests a mischarac-

terization of either the platform, the CMG array, or both. Since the platform MOI

estimate is only accurate to an estimated 10% and the error shown in Fig. 5.6(e) is

approximately 40% of the total angular momentum shown in Fig 5.6(a), this suggests

either a mischaracterization in the CMG array or significantly less accurate MOI

characterization than previously estimated.

Returning to Fig. 5.6(a), it is apparent that the maneuver is mostly complete at

approximately 10 seconds. If we compare that to Fig.5.6(e), we notice a positive

slope of the angular momentum in both the X− and Y−axes suggesting disturbance

torques of approximately 15 mN-m or approximately 6% of the available torque of

our ACS.

The data from the new maneuver is shown in Figs. 5.6(b), 5.6(d), and 5.6(f).

asdWhen we compare Fig. 5.6(b) to Fig. 5.6(a) it is apparent from the images that

the new controller gains are less aggressive than the previous controller gains as the

maneuver in Fig. 5.6(b) is smoother than the near bang-bang response shown in

Fig. 5.6(a); additionally, during the second maneuver the platform incurs approxi-

mately 25% less angular momentum than in the previous, more aggressive maneuver.

Figures 5.6(b), 5.6(d), and fig:errnew show the estimated platform angular momen-

tum, the estimated CMG angular momentum, and the angular momentum error after

the platform reconfiguration and gain changes. Figures 5.6(b) shows the lower gains
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resulting in a smoother maneuver. Figure fig:errnew shows us that while the platform

was maneuvering, there was an angular momentum error. This suggests that there

is still a mischaracterization in either or both of the MOI and the CMG array. From

the research presented in Ch. III we estimate that the MOI estimate is within ±1%,

this suggests and there is still a mischaracterization of the CMG array. It is recom-

mended that future work include additional characterization of the CMG array. After

verifying that there appear to be a decrease in the controller gains and a decrease in

the disturbance torques, two potential causes for the anomalous maneuver results, we

attempted to duplicate the gimbal rate anomaly in simulation. In the next section,

we will develop a simplified 2-dimensional CMG array and test sensitivities to tuning

parameters, time-delays, and gimbal rate saturation.

5.7.1 Identification of Sources of Gimbal Saturation.

To better understand the irregularities shown in Figures 5.5 we decided to attempt

to duplicate the irregularities in simulation using SDA steering law on a simplified

CMG array. This may seem counter-intuitive as this paper is primarily focused on

analyzing HSL, but SDA is inherently less complicated and is designed to apply

torque error to all singularities, which is why the presence of irregularities in the SDA

maneuver stood out and made SDA a strong candidate for anomaly identification. To

analyze the tuning parameters and attempt to duplicate the irregularities of the SDA

steering law near the hyperbolic singularity, we considered the following two SGCMG

array in the X − Y plane. The CMG array has the following governing equations

⎡
⎢⎣ hx

hy

⎤
⎥⎦ =

⎡
⎢⎣ cos δ1 + cos δ2

sin δ1 + sin δ2

⎤
⎥⎦ . (5.67)

Where hx and hy is the angular momentum in the X− and Y−axes respectively, δ1
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is the gimbal angle of the first CMG, and δ2 is the gimbal angle of the second CMG.

The CMG array has the following Jacobian

A =

⎡
⎢⎣ − sin δ1 − sin δ2

cos δ1 cos δ2

⎤
⎥⎦ . (5.68)

In order to simplify the equations, we couple the gimbal angles in a “scissor-pair”

to produce a torque in only one axis. To construct the scissor pair, we apply the

following constraint

δ2 = π − δ1 (5.69)

which results in a scissor pair about the Y−axis and simplifies Eqs. (5.67) and (5.68)

to

⎡
⎢⎣ hx

hy

⎤
⎥⎦ =

⎡
⎢⎣ 0

2 sin δ1

⎤
⎥⎦ (5.70)

and

A =

⎡
⎢⎣ 0

2 cos δ1

⎤
⎥⎦ (5.71)

respectively. If we originally desired a torque from this CMG array of 1 in the Y -axis,

we can represent the CMG array in one dimension with the following characteristics

h = 2 sin δ

δ0 = 0

ḣdes = 1

A = 2 cos δ

(5.72)
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where h is the angular momentum, δ is the gimbal angle, δ0 is the gimbal angle at

the start of the simulation, A is the Jacobian, and ḣdes is the desired torque from

the CMG array. If we apply the MPPI steering law, our commanded gimbal rate δ̇ is

calculated as

δ̇ = A−1ḣdes. (5.73)

For the first simulation, we implemented the MPPI steering at controller update

frequency of 100 Hz. Figure 5.7 shows the gimbal angles and gimbal rates as the CMG

approach the singularity at π/2. As expected, as A approaches zero A−1 becomes

incredibly large, resulting in very large gimbal rates. Since the large gimbal rates

associated with singularity are undesirable, we implemented SDA steering law and

repeated the simulation.
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Figure 5.7. Results of Maneuver Implemented with MPPI Steering Law

To implement SDA steering law on the CMG array, we define the following pa-

rameters
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m = σ1 = A

γ(m) = γ0e
(−μm)

Asda =
A

A2 + γ(m)

(5.74)

wherem is the singularity measure, γ(m) is the SDA avoidance term and is dependent

on the singularity measure, γ0 and μ are the SDA tuning parameters, and Asda is the

SDA modified control matrix. Once we have Asda defined we can calculate the desired

gimbal rates δ̇ as

δ̇ = Asdaḣdes. (5.75)

To best duplicate the experimental results, we chose the following tuning parameters,

identical to the terms used for SDA in the previous experiments

γ0 = .01

μ = 1

. (5.76)

We then repeated the simulation with the controller update frequency at 100 Hz

to approximate a maneuver with nearly-continuous controller updates. The results

of the simulation are shown in Fig. 5.8. Figure 5.8(a) shows the gimbal angles for

the simulation start at 0 and approach the singularity at π/2. Figure 5.8(b) shows

the gimbal rates for the simulation. As expected, the SDA steering law drives the

gimbal rate to zero as the array approaches the singularity at δ of π/2, but it is also

important to point out that before the gimbal rates are driven to zero there is a short

amount of time where gimbal rates of over 2.5 rad/sec are commanded, well over the

rate limit of 1.5 rad/sec. This suggests that the small tuning parameters used in this

simplified one-dimensional simulation, which were taken from the experiment, can

lead to the large torque errors associated with gimbal rate saturation. Additionally,
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there appears to be no apparent irregularities due to the discontinuous controller

update for a controller update frequency of 100 Hz.
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Figure 5.8. Gimbal Angle and Gimbal Rate with Original Tuning Parameters and 100

Hz Update Frequency

In addition to small tuning parameters leading to the irregularities in the primary

experiment, we hypothesized that the controller update frequency might be a poten-

tial source of the irregularities. As a result, we repeated the SDA simulation with

a controller update frequency of 10 Hz. The results are shown in Fig. 5.9. Similar

to the gimbal rates experienced in the 100 Hz simulation, as the CMG approaches

singularity the gimbal rates spike to over 2.5 rad/sec. However, due to the low update

frequency the gimbal angle overshoots the desired gimbal angle of π/2 and begins a

violent chatter about the singular position. This suggests that the controller update

frequency must also be considered when considering tuning parameters.

Upon considering the results from Figs. 5.8 and 5.9 we decided to adjust the

tuning parameters in an attempt to better satisfy the system limitations of SimSat.

We repeated the simulation with

151



0 2 4 6 8 10
0   

1/4π

1/2π

3/4π

time (sec)

δ
(r

a
d

)

δ

Singularity

(a) Gimbal Angle with Original Tuning
Parameters

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

time (sec)

δ̇
(r

a
d

/
se

c
)

δ̇ desired

δ̇ Rate Limit

(b) Gimbal Rate with Original Tuning
Parameters

Figure 5.9. Gimbal Angle and Gimbal Rate with Original Tuning Parameters and 10

Hz Update Frequency

γ0 = .1

μ = 6

. (5.77)

The results of the simulation are shown in Fig. 5.10. In Fig. 5.10(b) we see that the

gimbal rates stay within the gimbal saturation rates of 1.5 rad/sec and Fig. 5.10(a)

shows that the gimbal angle decays to the desired gimbal angle of π/2.
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5.8 HSL Conclusion

The purpose of the experiment presented in this chapter was to experimentally

analyze the CMG steering law developed by Leve [21]. After implementing LG, SDA,

and HSL on SimSat and analyzing the results we concluded that the experimental

results of this research concur with Leve's [22] simulated results while away from

singularity. Our experimental data showed both a reduction in the RMS null motion

and torque error were achieved by implementing HSL. When away from singularity

HSL reduced the amount of torque error by around 90% and null motion by approx-

imately 85%. Unfortunately, none of the three controllers were able to successfully

avoid the hyperbolic singularity, and all three exceeded the hard rate limits set on

SimSat. These rate limits in-turn resulted in a disturbance torque more than 10x

larger than the torque error commanded by the singularity avoidance algorithms.

After duplicating the irregularity in simulation, the researchers believe that SimSat

was unable to avoid the singularity due to a slow controller update rate of 10 Hz and

singularity avoidance constants that were too low relative to our on-board controller

gains. Future work is suggested to both increase the gimbal rate refresh rate and
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analyze and select platform specific singularity avoidance tuning parameters.
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VI. Conclusions and Future Work

The future goal of this research was to implement feed-forward optimal control

solutions on SimSat. However, after researching current characterization methods

for terrestrial-based satellite attitude simulators it was concluded that we must first

develop accurate and precise platform characterization methods. This began with a

novel MOI estimation method followed by an active torque reduction methodology.

After the success of the novel characterization and torque reduction methodologies, we

decided to readdress the previously inconclusive research on the hardware validation

of Hybrid Steering Logic (HSL) on SimSat. The conclusions of the three research

topics will now be presented.

6.1 MOI Estimation

In Chapter III, a method for dynamic estimation of the MOI matrix was proposed

and evaluated. This procedure started with the identification of some presumed er-

ror sources, specifically first-order torques and errors associated with time delays.

The previous assumptions–trivial first-order disturbance torques, well defined time

delays, and the ability to perform a pure rotation about a single axis–were analyzed

and shown to be invalid for SimSat. It was concluded that a deviation from more

traditional methods should be made so a modified version of MOI method for POI es-

timation created by Wiener [39] was implemented and evaluated. Previous researchers

used a step maneuver for MOI estimation which was analyzed and deemed inefficient,

noisy, and possibly unable to account for time delays. A new maneuver was pro-

posed, implemented, and analyzed in this research that kept a larger percentage of

data, could be curve fit for better noise rejection, and was experimentally shown to

be insensitive to time delays. In addition, the first-order disturbance torques were
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analyzed and deemed non-trivial while the second-order disturbance torques were ex-

perimentally verified trivial for maneuvers smaller than 5◦. Since the developed ma-

neuver is approximately ±2.18◦, a method was proposed and implemented to estimate

and remove angular momentum associated with the zero-and first-order disturbance

torques. The experimental result was the identification and correction of the first-

order disturbance torques resulted in the identification and correction of an otherwise

indiscernible 6.5% erroneous bias in the MOI estimate about the X−axis. The three

components of the new MOI estimation process–methodology, maneuver, and correc-

tion of disturbance torques–were combined and experimentally evaluated on SimSat.

The result was an MOI matrix that was calculated from an overdetermined set of

MOI estimates resulting in an average percent deviation of approximately 0.09% and

a 96% improvement over the previous methodology [6].

6.2 Disturbance Torque Identification and Reduction

In Chapter IV, we experimentally identified and then developed and analyzed a

method to actively correct for gravitational disturbance torques. Chapter IV started

by presenting a torque characterization maneuver that confirmed the invalidity of the

rigid body assumption on AFIT’s satellite simulator called SimSat. We identified a

second significant first-order disturbance torque which accounted for 14% of the avail-

able torque at a rotation of 15◦ about an axis in the X − Y plane. Upon evaluating

the potential sources of disturbance torques, we hypothesized that the disturbance

torque was due to structural deflections and added structural reinforcements and re-

duced the ballast mass to decrease structural deflections. The torque characterization

process was repeated, with a 91% decrease in first-order disturbance torques and a

87% decrease in all torques when evaluated at 15◦ rotation about a test axis in the

X − Y plane. In order to further decrease the disturbance torques, we added three
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linear torque actuators to actively counteract the disturbance torques which resulted

in an additional 55.7% decrease in first-order torques and 47% decrease in all dis-

turbance torques when evaluated at a 15◦ rotation about the X − Y plane. The

total gravitational disturbance torque was decreased from approximately 14.92% to

approximately 1.08% of SimSat's available torque when rotated 15◦ about an axis in

the X − Y plane. Additionally, enabling the linear actuators resulted in a 73% de-

crease in total disturbance torques when evaluated at 5◦, dropping the gravitational

disturbance torque to approximately 0.18% of the available torque. The result of

this research suggests that the rigid body assumption should always be verified on

satellite simulators. Additionally, this research provides a maneuver methodology to

analyze the rigid body assumption. In the event that the platform fails the rigid

body assumption, the equations of the dynamic imbalance can be calculated from

the proposed torque characterization maneuver. A set of linear actuators can then be

programmed to counteract not just the zero and first-order component of the dynamic

imbalance but higher-order torques as well.

6.3 Hardware Testing of HSL

The purpose of the experiment presented in Chapter V was to experimentally ana-

lyze the CMG steering law developed by Leve [21]. After implementing LG, SDA, and

HSL on SimSat and analyzing the results we concluded that the experimental results

of this research concur with Leve's [22] simulated results while away from singularity.

Our experimental data showed both a reduction in the RMS null motion and torque

error were achieved by implementing HSL. When away from singularity HSL reduced

the amount of torque error by around 90% and null motion by approximately 85%.

Unfortunately, none of the three controllers were able to successfully avoid the hy-

perbolic singularity, and all three exceeded the hard rate limits set on SimSat. These
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rate limits in-turn resulted in a disturbance torque more than 10x larger than the

torque error commanded by the singularity avoidance algorithms. While exceeding

rate limits near the hyperbolic singularity, HSL was unable to induce less torque error

than SDA. The researchers believe that SimSat was unable to avoid the singularity

due to a slow controller update rate of 10 Hz and singularity avoidance constants

that were too low relative to our on-board controller gains. In order to verify that

these were potential sources of the irregularity, a simple 2 SGCMG array was de-

signed in simulation to analyze the tuning parameters and the update frequency. It

was concluded that the tuning parameters result in gimbal rates of approximately 2.5

radians per second, larger than the gimbal saturation rate of 1.5 radians per second.

Additionally, the controller update frequency 10 Hz caused a violent chatter when

the CMG array approached singularity. The tuning parameters were increased and

the simulation was repeated, resulting in neither gimbal rate saturation nor gimbal

chatter. We suggest that future work focus on developing a method to choose the

tuning parameters to best meet the platform capabilities and mission requirements.

6.4 Future Work

The research in Chapter III developed a new method for in-flight MOI estima-

tion and made claims to precision by by analyzing and correcting for disturbance

torques and over-determining the MOI estimation equations to allow for analysis of

the residual between the single axis estimation and the best-fit MOI ellipsoid. We

propose future work to include a direct measurement of the MOI and POI to validate

the experimental in-flight results. Additionally, the MOI estimation process was able

to correct for time delays but in doing so was also able to identify the time delays.

Because time delays were one of the main reasons for not implementing an EKF

for MOI estimation, future work could include using the time delays estimated from
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the proposed MOI estimation methodology to implement a real-time MOI estimation

methodology.

Chapter IV developed and analyzed a methodology for identifying and correct-

ing for first- to third-order gravitational disturbance torques. Future research would

involve simultaneously estimating the static imbalance as well as the dynamic im-

balance. A key to this research path is to keep in mind that the solution to such

estimation is underdetermined and an artificial constraint such as choosing the im-

balance in the Z−axis that minimizes the two-norm of the deflections in the X−

and Y−axes should be implemented. Additionally, the linear actuators are currently

wired to take an input position signal in the form of a 0-5 V input and use a controller

on the actuator itself to close the loop with the position based potentiometer to reach

the desired position. Throughout this research, we have concluded that the onboard

controller algorithm discards small changes in position resulting in a series of 0.5 cm

step-maneuvers as opposed to the desired maneuver that resembles a ramp. For fu-

ture work, it is suggested that an Arduino® board be used to interpret the 0-5 V

desired position input and control the actuator by providing an extend and contract

command signal while using the actuators’ position potentiometer output to close

the control loop. The Arduino® board can calculate the control signal at a much

higher rate than the on-board controller–allowing for better tracking of the desired

actuator position– and with the ability to reprogram the desired control algorithm

we should be able to decrease the noise rejection thresholds and allow for a better

ramp response.

The increased mass characterization and disturbance torque correction presented

in Chapters III and IV should allow for better a-priori calculations of optimal control

solutions. This is a key component to near real-time implementation of optimal

control solutions. The results from Chapter V suggest that the controller update
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frequency of 10 Hz may be insufficient to avoid the CMG singularities on SimSat.

Although the singularities may be avoidable with larger singularity avoidance tuning

parameters, an increase in the tuning parameters would also mean an increase in the

null-motion and torque error. We suggest future work in analyzing the singularity

avoidance tuning parameters as a function of the gimbal rate update frequency to not

only develop a methodology for choosing the singularity tuning parameters but also

to determine how the operational torque errors increase with a decrease in gimbal rate

command frequency. After the tuning parameters are chosen to suit the operational

constraints of SimSat, we recommend repeating the HSL experiment on SimSat with

the new tuning parameters.

In addition to research topics, there are some hardware specific modifications that

we would suggest making to SimSat. The first would be to add a PhaseSpace motion

capture system for external monitoring of SimSat orientation. This would allow us to

correct for IMU drift and would allow for more repeatable experiments. Additionally,

we recommend adding an Arduino® board attached to two current sensors, two

voltage sensors, an alarm, and an on-board digital readout. This would allow us to

monitor not only the voltage of the two on-board batteries, but also the amount of

power that each battery provided to reach said voltage. The primary objective of

this setup is to identify and avoid low-voltage scenario which results in damage to the

electronics and incomplete experiments. The secondary benefit is that an integration

of the current sensors would provide an easy reference to the percentage of battery

consumption which for Lithium-Polymer batteries cannot easily be ascertained from

the voltage. In addition to the percentage of battery consumption, a readout of the

integrated battery current could also provide an early indication of battery failure if

the battery reaches critical voltage before reaching its integrated amp rating of 5.5

Ah.

160



6.5 Summary

In this research we developed a novel methodology for characterizing the MOI of

a terrestrial-based satellite attitude simulator. Afterwards, we analyzed the higher-

order disturbance torques experienced by terrestrial-based satellite attitude simula-

tors and implemented linear actuators to counteract the disturbance torques. We

experimentally estimated the MOI to within an estimated 0.09% and reduced the

gravitational disturbance torques from 14.92% to 1.18% of the available torque at

15◦ deflection. After estimating the MOI and counteracting the disturbance torques

we readdressed the hardware validation of HSL. What we found is that after the

configuration changes all three CMG steering algorithms analyzed were still unable

to avoid the hyperbolic singularity. We were able to duplicate a similar anomaly

in simulation and conclude that the tuning parameters should be chosen to better

account for SimSat gimbal rate saturation limits and a controller update frequency

of 10 Hz.
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